
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Value-based Subgoal Discovery and Path Planning
for Reaching Long-Horizon Goals

Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, Senior Member, IEEE and Chai Quek, Senior
Member, IEEE

Abstract—Learning to reach long-horizon goals in spatial
traversal tasks is a significant challenge for autonomous agents.
Recent subgoal graph-based planning methods address this chal-
lenge by decomposing a goal into a sequence of shorter-horizon
subgoals. These methods, however, use arbitrary heuristics for
sampling or discovering subgoals, which may not conform to
the cumulative reward distribution. Moreover, they are prone
to learning erroneous connections (edges) between subgoals,
especially those lying across obstacles. To address these issues, this
paper proposes a novel subgoal graph-based planning method
called Learning Subgoal Graph using Value-based Subgoal Dis-
covery and Automatic Pruning (LSGVP). The proposed method
uses a subgoal discovery heuristic that is based on a cumulative
reward (value) measure and yields sparse subgoals, including
those lying on the higher cumulative reward paths. Moreover,
LSGVP guides the agent to automatically prune the learnt
subgoal graph to remove the erroneous edges. The combination
of these novel features helps the LSGVP agent to achieve higher
cumulative positive rewards than other subgoal sampling or
discovery heuristics, as well as higher goal-reaching success
rates than other state-of-the-art subgoal graph-based planning
methods.

Index Terms—Long-horizon Goal-reaching, Subgoal Discovery,
Subgoal Graph, Reinforcement Learning, Motion Planning, Path
Planning

I. INTRODUCTION

Optimally performing long-horizon goal-reaching tasks is
a significant challenge for autonomous agents. Such a task
requires an agent to execute a long sequence of actions in a
large state space to reach a desired goal. In this paper, we focus
on the tasks involving spatial traversal while avoiding obsta-
cles to reach long-horizon goals. Model-free Reinforcement
Learning (RL) methods [1], [2] perform poorly on such tasks
due to the complexity of finding the optimal policy over long
timescales. Model-free Hierarchical Reinforcement Learning
(HRL) [3] enables long-horizon goal-reaching by learning a
hierarchy of policies to decompose a goal into a sequence of
shorter-horizon subgoals that are easier to reach [4], [5]. Here,
a subgoal might be an original state or an abstract state. This
approach is effective for learning in an unknown and stochastic
environment, but requires a large amount of data for training
the agent to reach different goals.
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Recent existing subgoal graph-based planning methods [6]–
[9] provide a more data efficient approach by learning a higher-
level model of the environment in the form of a subgoal graph,
in which the nodes and edges represent subgoals and distances
between them, respectively. Planning the optimal sequences of
subgoals can then be conducted over this graph to reach long-
horizon goals, while the primitive actions to reach subgoals
can be selected by model-free Reinforcement Learning (RL)
policy. Those methods, however, suffer from one or both of
the following two important issues:

Firstly, they might not be suitable for environments with
non-uniform distribution of rewards across different regions of
the state space as they rely on reward-agnostic heuristics for
discovering important subgoals. Such heuristics fail to discrim-
inate the subgoals lying on higher cumulative reward paths
(to various goals) from other candidate subgoals. Secondly,
they may plan sequences of subgoals that are infeasible to
achieve due to erroneous edges without any rigorous procedure
to update or remove them. This issue might occur especially
when erroneous edges are formed between pairs of subgoals
lying across the obstacles.

This paper proposes a novel subgoal graph-based planning
method, called Learning Subgoal Graph using Value-based
Subgoal Discovery and Automatic Pruning (LSGVP), to ad-
dress the two specific issues above. The key contributions of
this work are as follows:

• LSGVP is based on a novel subgoal discovery heuristic
proposed in this paper (subsection IV-B), which dis-
criminates between different states as candidate subgoals
by using a measure called path value. The path value
of a candidate subgoal is calculated with respect to a
pair of start and goal states, and it is proportional to
the predicted average cumulative reward if the agent
traverses from the start state to the goal through the
candidate subgoal. This helps in discriminating between
more valuable candidate subgoals and less rewarding
ones. The discovered subgoals become the nodes of the
LSGVP subgoal graph.

• We also propose an automatic graph pruning procedure
as a key component of LSGVP (subsection IV-E). This
procedure guides the agent to perform back-and-forth
edge traversals across the subgoal graph to automatically
prune the erroneous edges formed due to mis-predicted
distances, thereby reducing the infeasible plans.

We compare LSGVP with other subgoal discovery heuris-
tics and various state-of-the-art subgoal graph-based planning
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methods [6]–[9] in both two-dimensional maze navigation
[6] and high-dimensional visual navigation (VizDoom [10])
domains. In the experiments, LSGVP achieves higher average
cumulative rewards and higher goal-reaching success rates
compared to other methods, validating the benefits of value-
based subgoal discovery and graph pruning. LSGVP is also
compared with a state-of-the-art model-free HRL method,
called Hierarchical Actor Critic (HAC) [4], in the MuJoCo
continuous control domains [11]. The results show that LS-
GVP learns to reach long-horizon goals (via planning) in a
more data efficient manner than HAC. This result is discussed
in Appendix C of the Supplementary Document.

The organization of the rest of this paper is as follows:
The related work is reviewed in Section II. The essential
preliminary concepts, problem scope, and problem definition
are provided in Section III. The proposed method is described
in Section IV. Section V provides the details, results, and
analysis related to the experiments outlined above. Finally, the
conclusion of the paper is provided in Section VI.

II. RELATED WORK

Our work is related to subgoal graph-based planning. Var-
ious methods have recently been introduced in this category
[6]–[9]. Among these methods, Search on the Replay Buffer
(SoRB) [6] constructs a graph that connects subgoal states
which are uniformly sampled from a replay buffer filled during
the agent’s training. This graph is used to find the shortest
path to reach long-horizon goals. Huang et al. [8] proposed
an approach to learn sparse subgoal graphs by using the
Farthest Point Sampling (FPS) heuristic [12]. FPS samples
subgoal states that are situated farther from each other, thereby
improving the coverage of the state space. Semi Parametric
Topological Memory (SPTM) [7] constructs a subgoal graph
based on the predicted temporal proximity of different subgoal
states. These subgoal states are sampled at uniform intervals
from human demonstration trajectories. Recently, Hu et al.
[13] proposed a method called episodic memory-based topo-
logical mapping (e-TM), to learn sparse subgoal graphs using
fusion adaptive resonance theory (ART) networks [14].

In the visual navigation domains, various methods have
been proposed to learn topological or semantic maps for
planning. Among such methods, MapNet [15] is a deep learn-
ing based Simultaneous Localization and Mapping (SLAM)
method that learns allocentric spatial memory in a 2.5D
representation space, in which any information related to the
vertical dimension is implicitly encoded in a dense 2D field
representing the ground. Chaplot et al. [16] proposed Active
Neural SLAM (ANS) which uses a hierarchical structure for
planning. It learns a free-space geometric map including the
agent’s estimated pose. A global policy takes this map and
learns to exploit structural regularities to produce long-term
goals, which are then used to generate short-term subgoals
for a local action-selection policy using a geometric path-
planner. Neural Topological SLAM [17] learns topological
graph in which the nodes denote areas in a map and the edges
denote spatial relations. It leverages learnt semantic features to
localize visual observations to graph nodes. If an observation

is not localized to any node, a graph update module adds a new
node into the topological memory. Lv et al. [18] introduced
an approach to integrate 3D knowledge graph with Deep
Reinforcement Learning (DRL). Their method extracts 3D
spatial relationships between objects observed during agent’s
exploration to form graphs, then apply graph convolutional
networks to obtain node features for the established graph.
This graph is utilized to navigate to various target locations
based on the learned inter-object relations and to adapt to
various variations in novel or unfamiliar environments.

Planning can also be done using learnt parametric models
of state-action transitions [19]–[21]. In such method, subgoals
are directly sampled from the transition model. Nair et al.
[19] proposed a method for planning over a latent encod-
ing of visual state space at multiple levels. This method
is called Hierarchical Visual Foresight (HVF). In HVF, an
agent learns a parametric state-action transition model and
samples a sequence of subgoals using this model such that
the cost of planning from a start state to a goal, over those
subgoals, is minimized. Pertsch et al. [21] proposed a similar
method to find optimal sequence of subgoal states, which they
call keyframes. They use a two-level probabilistic prediction
model, where the higher-level model predicts a sequence
of keyframes (subgoals) and the lower-level model fills the
sequence of states from one keyframe to another (called
infilling), up to a goal state.

In contrast to LSGVP, the above-mentioned methods do
not use value-based subgoal discovery and lack a mechanism
for graph pruning. Sparse Graphical Memory (SGM) [9] is a
subgoal graph-based planning method which is more closely
related to LSGVP. It is a state abstraction method which
estimates the dissimilarity of different states as start or goal
nodes (not subgoals) based on their goal-conditioned Q-values.
On the other hand, LSGVP identifies salient states by directly
considering them as candidate subgoals between multiple start-
goal pairs and discriminating based on their path values
(discussed in subsection IV-B). SGM also uses an automatic
graph pruning heuristic based on traversals to random goals by
following the edges of the subgoal graph (along shortest path).
If the agent cannot traverse a particular edge, it is treated as
erroneous edge and removed. In contrast, LSGVP uses a more
rigorous back-and-forth edge traversal to prune the erroneous
edges, discussed later.

III. PRELIMINARIES

A. Universal Markov Decision Process

The basic problem considered in this paper is episodic goal-
reaching, in which an agent must learn to reach different
goals in different episodes but within the same environment.
This problem can be formally defined in terms of a Universal
Markov Decision Process (UMDP) [4], [6], [22]. A UMDP
consists of a state space S, an action space A, a set of goals
G, and a reward R(s, a|G) for taking an action a ∈ A in a state
s ∈ S conditioned on a goal G ∈ G. The expected cumulative
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reward after taking action a in state s is represented by the
following goal-conditioned Q-value function [22],

Qπ(s, a|G) = Eat∼π(at|st,G)[

t=T s
G∑

t=0

γtR(st, at|G)|

s0 = s, a0 = a]

(1)

Here, π(a|s,G) is a goal-conditioned policy which maps
a state and a goal to an action, T s

G is the time horizon over
which the goal G is reached when starting from the state s,
and γ ∈ [0, 1) is a reward discount factor. The objective of
the agent is to learn a goal-conditioned policy that maximizes
the goal-conditioned Q-value for all state-action pairs.

1) Problem Scope: In the context of this paper, we further
refine the problem scope by applying the following constraints:

• The set of goals is a subset of the state space, that is,
G ⊂ S.

• The reward R(s, a|G) is equal to −1 by default, in
addition to which other positive or zero reward values
can be defined. This means that the maximization of the
Q-value defined in equation 1 is equivalent to finding the
shortest path to the goal G, in the default case.

• The UMDP is stationary.

B. Planning for Long-horizon Goal Reaching

Learning a goal-conditioned policy becomes challenging in
the UMDPs with large state spaces if the time horizon for
reaching the goals is very long [23], [24]; this is due to the
complexity of finding the optimal policy over long timescales
without special exploration techniques [25]. We approach
the long-horizon goal-reaching problem from the perspective
of decomposing the long-horizon goal into simpler shorter-
horizon ones. This involves the training of a goal-conditioned
policy using various shorter-horizon goals, treating a few
shorter-horizon goals as subgoals, learning an inter-subgoal
transition model (subgoal graph), and planning over that model
to reach various long-horizon goals after the training phase.
Henceforth, we use different notations to avoid confusion
among state, subgoal, and goal, as follows: s is used as the
notation for a state s ∈ S, g is used as the notation for a
subgoal g ∈ S, and G is used as the notation for a goal
G ∈ G ⊂ S.

1) Reward-based Distance Function: For planning to reach
long-horizon goals, we have to first define a distance function
between pairs of states. We define a distance function that is
inversely proportional to the maximum Q-value when travers-
ing from one state to another [6], as follows,

D(si, sj) = Q+ −max
π

Qπ(si, a|sj)
∣∣∣∣a = π(a|si, sj) (2)

Here, Q+ is a domain-specific positive upper limit of the
Q-value, to avoid negative distances. It is used as a hyper-
parameter for LSGVP. This distance function has the following
key properties:

• In the problem scope defined in subsection III-A1, the
predicted distance D(si, sj) is proportional to the average

predicted number of steps required for traversing from si
to sj since the default reward is −1 at each step.

• Additionally, if there are positive rewards on the traversal
path, the predicted distance might be reduced due to
a higher predicted Q-value. This implies that higher
the cumulative reward on the path, the lower the distance.

2) Planning using Subgoals for Reaching Goals: We
now provide the specific problem definition that guides the
development of our method, presented in section IV.

Problem Definition: Given a set of goals G ⊂ S, a learnt
goal-conditioned policy π, and a learnt goal-conditioned
Q-value function Qπ , find a set of subgoals Gsub ⊂ S and
plan a subgoal sequence g1, g2, ..., gk, ..., gK ⊂ Gsub so as to
get the shortest path of traversal from any start state s ∈ S to
any goal G ∈ G, that is

min

(
D(s, g1) + ...+D(gk−1, gk) + ...+D(gK , G)

)
. (3)

This can be treated as a shortest-path motion (traversal)
planning problem in terms of the reward-based distances.

IV. PROPOSED METHOD

This section presents our method, LSGVP, for finding
subgoals and planning to reach long-horizon goals (Problem
Definition, subsection III-B2). The LSGVP agent starts with a
phase of exploration of the UMDP followed by the training of
the goal-conditioned policy and Q-value function (subsection
IV-A). It collects the observed states into a memory during this
phase. It then uses a value-based subgoal discovery heuristic to
find useful subgoals out of the states collected in the memory
(subsection IV-B). Those subgoals become the nodes of a
subgoal graph, in which the edge weights are equal to the
predicted distances D (subsection IV-C). The learnt subgoal
graph can be used for planning the shortest paths (sequences
of subgoals) to various long-horizon goals encountered during
the testing phase. The planning procedure is discussed in
subsection IV-D. However, the LSGVP agent also performs
automatic graph pruning before the testing phase to avoid
infeasible plans (subsection IV-E).

A. Exploration and Training

In the training phase, the LSGVP agent explores the given
UMDP in an episodic manner. In each episode, the agent is
given a randomly sampled training goal. If the agent does
not reach the original training goal in an episode, the terminal
state (sT ) in that episode is treated as the training goal when
learning the goal-conditioned policy π(a|s, sT ) and the goal-
conditioned Q-value function Q(s, a|sT ). If the agent reaches
the original training goal, sT is naturally the same as that goal.
This is loosely based on the concept of Hindsight Experience
Replay (HER) [26]. As per the approach outlined in subsection
III-B, we keep the lengths of the training episodes short to
ensure that the training goals have a shorter horizon than
the long-horizon goals that might be encountered during the
testing phase.
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Fig. 1: Examples of (a) similar subgoals due to spatial proximity, (b) dissimilar subgoals due to spatial separations, and (c) dissimilar subgoals
due to different rewards obtained, despite spatial proximity. Coin represents a state in which the agent can receive higher reward. The dashed
lines represent the spatial distances between different states in terms of the number of steps required for traversal.

After each episode, the agent adds the observed states into
an experience memory B. Thus, B ⊂ S. After the training
phase, the learnt policy π is treated as the stationary primitive
action policy that is used to traverse to various subgoals in
the subgoal graph (discussed later) without retraining. The
learnt Q-value function is used to estimate the distances as
per equation 2.

B. Subgoal Discovery

After the training phase, the agent uses the data present
in B for subgoal discovery and graph construction. The
sufficiency of this data is based on the following assumption:

Assumption 1: The agent extensively explores the state
space S to sufficiently populate memory B, so that it contains
the states from all the regions of the state space from which
the start states and the test goals might be sampled during
the test phase. Essentially, the set of long-horizon test goals
G is a subset of B.

Under this assumption, we use the memory B to sample goals
that are used for subgoal discovery. The agent populates a set
containing pairs of start and goal states randomly sampled
from B, denoted as SG = {(s,G) |s ∈ B, G ∈ B}. Then,
the agent needs to discover a set of subgoals that satisfy the
following two criteria,

• C1: The subgoals should be sparsely distributed over the
state space so that planning over the subgoal graph incurs
low complexity.

• C2: For consistency with the problem definition (equation
3), the subgoal discovery heuristic should discriminate
between the subgoals that lie on higher cumulative re-
ward paths (lower sum of predicted distances) and other
candidate subgoals.

This subsection describes the novel subgoal discovery
heuristic used in LSGVP to satisfy both criteria. This heuristic
discriminates between different states in B (candidate sub-
goals) based on a measure named as path value. The path
value of a state si with respect to a start state s and a goal G
is defined as

PV(s, si, G)g=si = −
(
D(s, si) +D(si, G)

)
. (4)

Here, g = si implies that si is treated as a subgoal. The
relation between the predicted distance D and the Q-value
in equation 2 suggests that the path value PV(s, si, G) is
proportional to the predicted cumulative reward the agent
might obtain when traversing1 from the state s to the goal
G using si as the subgoal. Therefore, the path value is a
reward-based measure of the utility of a state as a subgoal
with respect to a certain pair of start and goal states.

Then, the agent must discriminate between various states to
discover those which can be treated as salient subgoals, while
satisfying criteria C1 and C2. For this, we define a dissimilarity
measure between two states si ∈ B and sk ∈ B based on their
path values, as follows

dsim(si, sk) = max
(s,G)∈SG

∣∣∣∣PV(s, si, G)− PV(s, sk, G)

∣∣∣∣ (5)

The dsim measure is equal to the maximum absolute dif-
ference between the path values of two states (candidate
subgoals), where the maximum is taken over all the start and
goal pairs in PV . This measure is used to discriminate between
different states and discover the salient subgoal states. We
discuss the motivation for using dsim below.

Let us consider the three examples shown in Figure 1. In the
first two examples (sub-figures 1(a) and (b)), there is only a
default reward of −1 received at each step (as per the problem
scope outlined in subsection III-A1). Therefore, the lengths of
the dashed lines connecting any pair of start and goal states,
that are D(s, si) +D(si, G) and D(s, sk) +D(sk, G), simply
represent the predicted number of steps required to traverse
between that pair through the subgoals si and sk, respectively.
In the first example (sub-figure 1(a)), si and sk are situated
closer to each other. Therefore, all predicted distances are
ideally similar for these two subgoals and, as per equation
4, the two subgoals have similar path values for all pairs of s
and G. Hence, dsim(si, sk) is small.

In contrast, as the subgoals become distant (sub-figure
1(b)), their path values also become different from each other.
This means that dsim(si, sk) becomes larger. Due to such
a relationship between the dsim and the spatial separation
between two subgoals, we can discover sparsely distributed

1Refers to hypothetical traversal path in this case since the function D
provides the predicted estimate of distance. This should not be taken as a
comment on feasibility of traversal.
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subgoals for which dsim is above a certain threshold, thereby
satisfying criterion C1.

Although it is also possible to obtain the sparse distribution
of subgoals by other means of reward-free measures such as
Euclidean distances, the use of dsim is necessary in this case
as the reward-based path values must be considered according
to criterion C2. Such a case is shown in the third example (sub-
figure 1(c)). In this example, although si and sk are spatially
closer to each other, the agent can receive a positive reward
when traversing through si. The lengths of the start-to-goal
paths (number of steps) are similar for both subgoals, but their
path values (PV) are different due to the different rewards
accumulated. Therefore, the agent must discriminate between
the two subgoals on the basis of their path values instead of
path lengths or Euclidean distances. This is satisfied by using
the dsim(si, sk) measure for dissimilarity.

In short, we use dsim to discriminate between various
states during subgoal discovery to find subgoals that are
generally farther from each other (for sparsity criterion C1)
but also include subgoals lying on higher cumulative reward
paths even if they are closer to other discovered subgoals
(criterion C2). Based on this motivation, we define the
subgoal discovery heuristic of LSGVP as follows.

Subgoal Discovery Heuristic: At the beginning of subgoal
discovery, the LSGVP agent creates a subgoal set Gsub and
fills it with one randomly sampled state from the experience
memory B, treated as a random subgoal. Then, the following
rules are incrementally applied on each si ∈ B to discover
rest of the subgoals,

• RULE 1: If
dsim(si, g) ≤ ϵ (6)

for at least one g ∈ Gsub, then si is similar to g and it
is not considered a subgoal.

• RULE 2: If
dsim(si, g) > ϵ (7)

for each g ∈ Gsub, then si is dissimilar from all the
existing subgoals and it is added to Gsub as a new
subgoal.

The hyper-parameter ϵ ∈ [0,∞) in equations 6 and 7 is
the threshold of dissimilarity beyond which two states are
considered unique as subgoals. Its value controls the sparsity
of the discovered subgoals. A smaller value of ϵ results in a
denser distribution of subgoals, and vice versa.

A state si can only satisfy one of the rules. Given the nature
of the distance function (equation 2), RULE 1 is generally
satisfied by a state which is spatially closer to at least one
existing subgoal (in Gsub). On the other hand, RULE 2 is
generally satisfied by a state which is spatially farther from all
the exiting subgoals (in Gsub) or it lies on a higher cumulative
reward path.

Relating these rules to the examples given in Figure 1,
the states si and sk in the first example satisfy RULE 1,
hence only one of them can be added to Gsub, whereas the
states in the second example satisfy RULE 2 and both can be
added to Gsub. The states in the third example also satisfy

RULE 2 despite being spatially closer to each other because
of the higher path value difference due to the different rewards
obtained upon traversing through those states. The complete
subgoal discovery heuristic is summarized in Algorithm 1.
The time complexity of the heuristic is O(|B|×|SG|×|Gsub|).
Here, |Gsub| is not predetermined but depends on the number
of subgoals discovered.

Algorithm 1 Subgoal Discovery
INPUT: Experience memory B ⊂ S
OUTPUT: Set of subgoals Gsub

Fill a set SG with |SG| randomly sampled pairs of states (s ∈ B) and goals
(G ∈ B)
Fill a set Gsub with one random subgoal sampled from B
Initialize ϵ
foreach si ∈ B do

rule2 ← 1
foreach g ∈ Gsub do

rule1 ← 1
foreach (s,G) ∈ SG do

if |PV(s, si, G)− PV(s, g,G)|≤ ϵ then
do nothing

else
rule1 ← 0
break

if rule1 = 1 then
▷ RULE 1 satisfied for at least one g

rule2 ← 0
break

if rule2 = 1 then
▷ RULE 2 satisfied

Gsub ← Gsub + {si} ▷ Subgoal Discovery

C. Subgoal Graph Construction

After subgoal discovery, LSGVP adds the subgoals from
Gsub as the nodes in a subgoal graph GR. An edge E(gi, gk)
is created from a node gi to another node gk if the predicted
distance D(gi, gk) ≤ MAXDIST . The predicted distance
D(gi, gk) is set as the weight of the edge E(gi, gk). The hyper-
parameter MAXDIST ∈ [1,∞) is the maximum predicted
distance from a node (subgoal) gi to another node (subgoal)
gk up to which an edge can be created from the former to the
latter. Its value controls the number of edges created, that is,
|E|.

The MAXDIST limit is set to avoid a case in which
a direct edge is formed from a subgoal gi to another long-
horizon subgoal gj (large D(gi, gj)), since the agent might
fail to reach the long-horizon subgoal gj using the primitive
action policy π(a|s, gj) (gj treated as a goal) trained to reach
shorter-horizon goals (subsection IV-A). The time complexity
of graph construction is O(|Gsub|2).

D. Planning over Subgoal Graph

After the construction of the subgoal graph GR, planning
over the subgoals to reach a long-horizon goal is performed
as follows (see Algorithm 2). Given a start state s and a long-
horizon test goal G ∈ G, they are firstly added as temporary
nodes in GR. Temporary edges are created from s to every
subgoal node gi ∈ Gsub for which D(s, gi) ≤ MAXDIST.
Temporary edges are also created to the test goal G from every
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subgoal node gi for which D(gi, G) ≤ MAXDIST. Then, the
shortest path from s to G is found using Dijkstra’s algorithm.

Algorithm 2 Planning and Traversal to a Goal
INPUT: Subgoal graph GR
OUTPUT: Sequence of subgoals (’path’) for traversal to Goal
def SubgoalPlan(s, G):

foreach sgi ∈ GR do
if D(s, sgi ) ≤ MAXDIST then

Add a temporary edge E(s, sgi ) to GR with weight equal to
D(s, sgi )

if D(sgi , G) ≤ MAXDIST then
Add a temporary edge E(sgi , G) to GR with weight equal to
D(sgi , G)

path ← DIJKSTRA(GR, source = s, target = G)
if path = ∅ then

path ← s, G
return path

G ← Goal, s← current state, path ← SubgoalPlan(s, G), steps ← 0
while episode not terminated do

g ← path{1}, s← current state, a← π(s, g). Apply action a
steps ← steps + 1, s← current state
if D(s,G) ≤ η then

break
if D(s, g) ≤ η then

path ← path{1 : end} ▷ Remove the node at index 0, steps ← 0

if steps % ρ = 0 then
s ← current state
path ← SubgoalPlan(s, G) ▷ Replan

Since the weight of each edge in GR is equal to the
predicted distance D from one node to another (subsection
IV-C), the shortest path over the graph satisfies the problem
definition (equation 3). The agent traverses the planned path
using the primitive action policy π, with the subgoal nodes
used as the intermediate shorter-horizon goals, until it reaches
the long-horizon goal G.

To detect if the agent has reached a subgoal, we use state
localization as follows. A state s ∈ S is localized to a subgoal
node gi if D(s, gi) ≤ η or D(gi, s) ≤ η. The hyper-parameter
η ∈ [0,∞) is the maximum predicted distance from one state
to another (state or subgoal) up to which they are considered
close to each other. The value of η is smaller than the value of
MAXDIST . The agent re-plans the path after a fixed number
of steps if it has not reached a target subgoal node (determined
by localization). We set the step-limit as a hyper-parameter ρ,
which is equal to MAXDIST - Q+ when the default reward
is −1 at each step.

If the agent does not reach a target subgoal node after ρ
steps, it assigns the current state as the start state, removes
the previous temporary edges, creates new temporary edges,
and replans. If a path to G over the subgoal graph cannot be
found, the agent simply follows the policy π(a|s,G) using the
long-horizon goal G as input instead of a subgoal. The time
complexity of planning (using Dijkstra’s algorithm) is Θ(|E|
+ |Gsub|) × log|Gsub|).

Algorithm 3 Subgoal Graph Pruning
INPUT: Non-pruned graph GR
OUTPUT: Pruned graph GR
def EdgeTraversal(E , s, steps):

keep ← 1, (gi, gy)← E , RE(gi, gy) ← 0
i ← 1
while i ≤ ρ do

a ← π(s, gy), Apply action a
RE(gi, gy) ← RE(gi, gy) + R(s, a, gy)
steps ← steps + 1, i ← i + 1, si ← current state
if D(s, gy) ≤ η then

break ▷ reached gy

DE(gi, gy)← Q+ −RE(gi, gy)
if DE(gi, gy) > MAXDIST then

keep ← 0 ▷ to be pruned
return keep, steps

Add the edges of GR to untested edges list and nodes to untested nodes list
Initialize MAX PRUNING EPISODES and MAX STEPS
ep ← 0
while ep < MAX PRUNING EPISODES do

Reset initial state
seek subgoal ← ∅, local subgoal ← ∅
if untested edges list = ∅ then

break
steps ← 0
while steps < MAX STEPS do

s← current state
if D(s, gi) ≤ η for any gi ∈ GR then

local subgoal ← gi
if local subgoal is not in untested nodes list then

local subgoal ← ∅

if local subgoal ̸= ∅ then
▷ Enter B-F mode

gi ← local subgoal, seek subgoal ← ∅, forth edges ← ∅
foreach gy ∈ GR.neighbours(gi) do

if E(gi, gy) ∈ untested edges list then
Add E(gi, gy) to forth edges

node done ← 1
foreach fe ∈ forth edges do

keep, steps ← EdgeTraversal(fe, s, steps)
if keep = 0 then

Remove fe from GR ▷ pruning
Remove fe from untested edges list
s← current state, Back edge be ← E(s, gi)
keep, steps ← EdgeTraversal(be, s, steps)
if keep = 0 then

node done ← 0
break ▷ did not reach back

if node done = 1 then
Remove gi from untested nodes list

local subgoal ← ∅
if local subgoal = ∅ then

▷ Enter SEEK mode
if seek subgoal = ∅ then

seek subgoal ← random node from untested nodes list
path ← SubgoalPlan(current state, seek subgoal) ▷
Algorithm 2
Step towards path1, steps ← steps + 1

ep ← ep + 1

E. Subgoal Graph Pruning

In subsection IV-C, we introduced the hyper-parameter
MAXDIST which limits the formation of edges between
distant subgoals. However, it is still possible that a few
of the edges added to the subgoal graph GR are formed
due to Q-value prediction errors, while the actual distance
between two subgoal nodes is larger than MAXDIST .
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Such edges become problematic in task domains that contain
obstacles (such as the walls in Figure 1) because an erroneous
edge might be formed between two subgoal nodes across
an obstacle. To remove such erroneous edges, LSGVP is
equipped with an autonomous pruning procedure which is
applied before the testing phase. The pruning procedure uses
the following assumption about state localization,

Assumption 2: The predicted distance D is accurate or
correct for pairs of states or subgoals that are closer than the
localization limit η (< MAXDIST ).

The subgoal graph pruning procedure of LSGVP is described
as follows. It is also summarized in Algorithm 3. At the
beginning of the pruning procedure, the agent fills a list of
untested nodes and edges with the nodes and edges of the
graph GR. It then toggles between the following two modes
- back-and-forth edge traversal (B-F mode) and traversal to
an untested node (SEEK mode), until all the edges have been
tested or a pruning time limit is reached. These modes are
described as follows.

a) B-F mode.: If the current state is localized to an
untested subgoal node gi, the B-F mode is started. In this
mode, the agent traverses to one of the neighbour nodes of
gi, say gy if the edge E(gi, gy) is untested. This traversal
is performed using the primitive action policy π (subsection
IV-A). The traversal stops when the current state localizes to
gy or after ρ steps (step-limit defined in subsection IV-D).

The edge E(gi, gy) is then removed from the list of untested
edges. The cumulative reward obtained on the traversal tra-
jectory from gi to gy , denoted as RE(gi, gy), is then used
to calculate an edge distance DE(gi, gy) = Q+ - RE(gi, gy).
If DE(gi, gy) > MAXDIST, the edge E(gi, gy) is considered
erroneous and it is removed from the graph GR (pruning).
This pruning using a single traversal along an edge is based
on the condition that the primitive action policy is stationary
after the training phase (subsection IV-A) and the UMDP is
also stationary (subsection III-A1).

The agent then traverses back to gi for at most ρ steps.
Upon returning to gi, the agent chooses another neighbour,
say gz , as the next traversal target if the edge E(gi, gz) is
untested. The edge traversal and pruning process is repeated
for the edge E(gi, gz), and so on. The B-F mode is terminated
when all outgoing edges from gi have been tested or the agent
cannot return to gi within ρ steps. gi is removed from the list
of untested nodes if all of its outgoing edges have been tested.

b) SEEK mode.: Upon termination of B-F mode for one
subgoal node, or when the current state cannot be localized
to any subgoal node, the agent enters the SEEK mode. In
this mode, the agent traverses to a randomly chosen untested
node by planning the shortest path from the current state to
the chosen node (using the planning procedure described in
subsection IV-D). Upon reaching an untested node, the B-F
mode is resumed for that node.

The time required to complete the B-F mode for all the
edges is O(|E|2×ρ). Additional time is required during each
SEEK mode traversal between consecutive execution of B-F
mode for different nodes. That time is difficult to quantify

Fig. 2: Task domains used in different experiments.

Training Pruning Testing
Exp1 DDPG 1800 x 300 - 100 x 300

LSGVP and
other methods 1500 x 20 300 x 300 100 x 300

Exp2 DDPG 1800 x 300 - 100 x 300
SoRB and
Map-planner 6000 x 20 - 100 x 300

LSGVP and
SGM 1500 x 20 300 x 300 100 x 300

Exp3 SPTM 30 x 50,000 - 96 x 5000
LSGVP and
SGM 10 x 50,000 200 x 5000 96 x 5000

TABLE I: Composition of different experiments. Each cell value is in
terms of ’number of episodes × number of steps’. Subgoal discovery
and graph construction occurs after Training stage.

because it depends on the current state and the randomly
chosen untested node to which the agent traverses during the
SEEK mode.

V. EXPERIMENTS

This section presents various experiments conducted to
evaluate our method LSGVP on task domains requiring navi-
gation to long-horizon goals. The composition of each trial of
different experiments is shown in Table I. The task domains
used in different experiments are shown in Figure 2. The
hyper-parameters of LSGVP are set via a procedure described
in Appendix A of the Supplementary document. Three types
of performance metrics are used in the reported experiments,
as follows,

Average Success Rate. Success rate in one trial of an
experiment is equal to the percentage of testing episodes in
which the agent successfully reaches the long-horizon goals.
The average is taken across multiple trials.

Average Planning Time. Planning Time is equal to the time
required to plan a single path from a start state to a long-
horizon goal over the subgoal graph. The average is taken
across multiple instances of planning within a testing episode,
across multiple testing episodes in a trial, and across multiple
trials.

Average Positive Cumulative Reward (APCR). Positive cu-
mulative reward is equal to the total positive reward (including
zero) gathered by the agent while traversing from the start state
to the long-horizon goal in a testing episode of a trial. The
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average is taken across multiple testing episodes in a trial and
across multiple trials.

A. Exp1: LSGVP vs Other Subgoal Discovery Methods

LSGVP uses the path value measure for subgoal discovery
(subsection IV-B, equation 4). In this subsection, we compare
LSGVP with a few other subgoal graph-based ATD methods
which use different subgoal discovery heuristics.

1) Task Domain:
Coin Gather (Figure 2): Continuous state and action spaces.
Navigation + Object Gathering. This is our custom task
domain in which an agent needs to traverse a two-dimensional
plane to reach a goal location, while it can gather a Coin
(intermediate positive reward) during the traversal. The agent
is in the form of a two-dimensional point. The state space
is three-dimensional and each state is denoted as s =
(x, y, hasCoin) ∈ [0, 55]×[0, 80]×(0, 1). The state represents
the location of the agent and whether it has gathered a Coin
or not. The action space is two-dimensional and each action
is denoted as a = (dx, dy) ∈ [−1, 1]2, which indicates an
incremental change in the location of the agent. Random noise
is added to the action with probability 0.1 to introduce stochas-
ticity. There are four Coins fixed at different locations. Each
Coin physically represents a 2× 2 region in the plane. If the
agent passes through this region, it gathers the corresponding
Coin. Upon gathering a Coin, the agent receives a +5 reward.
The agent can only gather a Coin if the value of hasCoin is
0. The value of hasCoin becomes 1 when the agent gathers
any one of the Coins. Due to this feature, the agent does not
loop around a Coin region (exploiting the positive reward).

Other than the sparse positive rewards, the default reward at
each time step is −1. The reward upon reaching a goal state is
0. In each testing episode, the agent is provided with two goals,
both with the same location features but different hasCoin
features. The agent can reach either of the goals for successful
completion of the episode. This means that gathering a Coin
is not necessary to reach a goal.

The hyper-parameters of LSGVP and other methods in this
domain are as follows: ϵ = 5, Q+ = 5, MAXDIST = Q+ +
11, η = Q+ + 3, ρ = MAXDIST - Q+, |B| = 2000, |SG| =
2000.

2) Methods Compared: For a fair comparison, we use the
same training procedure (subsection IV-A), graph construction
procedure (subsection IV-C), and the distance function (equa-
tion 2) as those used in LSGVP for all methods discussed
below. Moreover, our pruning procedure is added to all the
methods (subsection IV-E). Hence, the only difference between
LSGVP and other methods is in terms of the heuristic used
for subgoal sampling/discovery. The compared methods are
described as follows,

SoRB+Pruning: This method samples a predetermined
number of subgoals with uniform probability. Here, SoRB
stands for Search on the Replay Buffer [6], which is a
state-of-the-art subgoal-graph based planning method. In the
original SoRB, the primitive policy and Q-values are learnt

in the same manner as described in subsection IV-A. Then, a
predetermined number of subgoals are randomly sampled from
the experience memory B with uniform probability. SoRB then
constructs a graph connecting the sampled subgoals, in which
the edge weights are the inverse of the Q-values (the same as
the distance function used for LSGVP). However, the original
SoRB does not use a pruning technique to reduce erroneous
edges.

FPS+Pruning: This method samples a predetermined num-
ber of subgoals that widely cover the state space, using the
Farthest Point Sampling (FPS) algorithm [8], [12]. In FPS,
the first subgoal state is randomly sampled from B. Then, a
state in B that is farthest from the first subgoal is sampled
as the next subgoal. The distance measure is the same as
the function D defined in equation 2. Subsequently, the next
sampled subgoal is farthest from the first two subgoals, the
fourth sampled subgoal is farthest from the first three, and
so on. The sampling stops after populating the subgoal set
Gsub with the predetermined number of subgoals. The sparse
subgoal graph is then constructed over these subgoals. This
heuristic is used by Huang et al. [8] to learn the sparse
subgoal graph for goal-reaching. However, their method does
not include pruning.

Bottlenecks+Pruning: This method samples a predeter-
mined number of subgoals lying at the bottleneck regions of
the state space. Bottlenecks are those regions which become
the convergence points for the paths connecting various pairs
of start and goal states [27]. In the problem scope of this
paper (subsection III-A1), we only use the shortest paths
connecting various pairs of start and goal states to identify
such bottlenecks. Firstly, we construct a dense graph over
the states in the experience memory B using the procedure
given in subsection IV-C (same distance function D and setting
MAXDIST = 4). This is called the base graph. Then, a set
of shortest paths are found between random pairs of start and
goal states (nodes), over the base graph. Subsequently, we use
the Betweenness Centrality (BC) measure [28] to discover the
bottleneck subgoals. BC of a state is equal to the fraction
of shortest paths passing through that state. A state with
higher BC represents a bottleneck subgoal. We sort the states
according to BC values and take the predetermined number of
subgoals with higher BC.

SR+Pruning [29]: In this method, subgoals are discovered
by first learning Successor Representations (SRs) of the states
observed during exploration and then clustering the SRs to
extract the cluster centers. Subgoals are the states with largest
cosine similarity with the cluster centers. The SRs capture
temporally close-by states, therefore, the generated clusters
are spread across the state space while each cluster contains
densely connected states. Thus, the discovered subgoals tend
to optimize the state space coverage. However, there is no
involvement of rewards or value-function in subgoal discovery.

Sparse Graphical Memory (SGM) [9]: This method
is closer to LSGVP in terms of the value-based subgoal
discovery. The basis of SGM is to create a sparse graph
structure by dynamically merging similar nodes, where the
nodes refer to a subset of the states observed by the agent.
The similar nodes are determined using two-way consistency,
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Methods ↓ APCR Relative
APCR %

Average
Success Rate

Non-hierarchical DDPG 0.02 ± 0.03 0.004 17.2 ± 2.4
SoRB+Pruning 2.65 ± 1.22 58.1 90.9 ± 3.2
FPS+Pruning 2.80 ± 1.31 61.4 91.2 ± 2.9

Bottleneck+Pruning 2.47 ± 1.28 54.1 89.6 ± 4.6
SR+Pruning 2.82 ± 1.28 61.9 90.6 ± 2.7

SGM 4.55 ± 0.22 100 91.2 ± 3.0
LSGVP 4.56 ± 0.21 100 91.1 ± 3.1

TABLE II: LSGVP vs other subgoal discovery methods. APCR stands
for Average Cumulative Positive Reward.

according to which two states are considered similar if
they are both interchangeable as goals and interchangeable
as starting states according to the goal-conditioned value
function. Only the states which are dissimilar are kept as
salient subgoals. The dissimilarity threshold is set using a
hyper-parameter τa. This is comparable to the dissimilarity
based subgoal selection in our method (subsection IV-B),
however, we determine dissimilarity based on path values by
directly considering nodes/states as subgoals rather than start
or goal states. SGM also includes a pruning procedure based
on random goal selection. For this experiment, we replace
SGM’s pruning procedure with our back-and-forth pruning
(subsection IV-E). The dissimilarity threshold τa is set as
τa = 5 and MAXDIST is same as that of LSGVP.

LSGVP discovers 197 ± 4 subgoals in different trials,
SGM discovers 198 ± 3, and for other methods the cutoff is
set as 200 subgoals. Apart from these subgoal graph-based
(hierarchical) methods, we also compare the non-hierarchical
Deep Deterministic Policy Gradient (DDPG) method [1] with
LSGVP. In this method, a non-hierarchical agent uses the
goal-conditioned primitive action policy π(s, a|G) to reach a
long-horizon goal without any subgoal. The policy and the
Q-value function are implemented as DDPG actor and critic,
respectively. This is the same as the implementation of the
primitive action policy and Q-value function used by other
methods, including LSGVP.

3) Results and Analysis: Ten experiment trials are con-
ducted for each method. The composition of each trial is
shown in Table I. In each training episode, the start state and
the (shorter horizon) training goal are randomly sampled from
anywhere in the state space. In each testing episode, the test
goal is randomly sampled from anywhere in the state space but
the start state is randomly sampled from one of the rooms not
containing the goal, to ensure that the goal-reaching horizon
is long. As mentioned in subsection V-A1, the test goal is
duplicated into two goals with hasCoin equal to 0 and 1,
respectively. We run each testing episode twice, once for each
test goal, and take the best result in terms of APCR (including
zero reward).

Table II shows the results comparing the APCR obtained
using different methods during the testing phase, as well
as their success rates. The non-hierarchical agent performs
the worst among all methods and often fails to reach the
long-horizon goal because it gets stuck at the obstacles. This

Fig. 3: Subgoal graphs learnt in one of the trials of Exp1. Only the
subgoal states with hasCoin = 0 are shown as the graph vertices in
sub-figure (b) for clarity.

shows that subgoals are important for reaching long-horizon
goals. Among the subgoal graph-based methods, it is observed
that SoRB+Pruning, FPS+Pruning, Bottleneck+Pruning, and
SR+Pruning agents take less positively rewarding paths to the
test goals on average, in comparison to the LSGVP agent.
These results are analyzed below.

In the Coin Gather task domain, an agent does not need
to necessarily gather a Coin to reach a test goal. Therefore,
various subgoal graph-based methods, including LSGVP, show
similar performance in terms of the average success rate.
However, the agent must include the subgoal states from the
Coin regions (Figure 3) as the nodes of the subgoal graph to
be able to plan a higher reward path to a test goal. LSGVP
discriminates the utility of different states as subgoals based
on their respective path values (subsection IV-B). Hence, it
can identify that a state lying in a Coin region, including Coin
1 and Coin 4, has a higher path value compared to other states
in the proximity. In this way, the LSGVP agent consistently
includes a Coin state as one of the subgoals in the graph in
various trials. The only method which is comparable to LS-
GVP in terms of value-based subgoal discovery is SGM, which
discriminates different subgoal candidates (states) according to
the value function. SGM performs similar to LSGVP in terms
of APCR. This method is able to discover the subgoals lying
in the higher reward regions (Coin regions), similar as LSGVP,
due to the value-based two way consistency heuristic used for
subgoal discovery.

SoRB+Pruning, FPS+Pruning, and SR+Pruning agents often
fail to include the subgoal states from the Coin regions
because their subgoal discovery heuristics do not discriminate
between the subgoals lying on the higher reward paths and
other subgoals. Therefore, these two agents gather about
40% less APCR compared to LSGVP. Intuitively, the Bot-
tleneck+Pruning agent should include the subgoals from the
Coin regions in the set of discovered bottlenecks. This is
so because several shortest paths over the base graph must
pass through the Coin states since the edge weights of that
graph (distance function D) are inversely proportional to the
cumulative reward (equation 2). However, the fraction of the
shortest paths passing through the Coin regions 1 and 4 at the
two corners (Figure 3) is lower than the fraction of shortest
paths passing through the central area. Therefore, most of the
bottleneck subgoals lie in the central area, including the Coin
regions 2 and 3 (Figure 3). This leads to a few cases in which
the agent should pass through Coin 1 or Coin 4 to gather
more rewards but it does not do so because the subgoal graph
does not lead the agent through those Coin regions. Hence, the
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APCR of Bottleneck+Pruning is also about 50% worse than
that of LSGVP.

B. Exp2 and 3: Effect of Pruning

In this subsection, we compare LSGVP with state-art-of-
the-art methods that also use subgoal graphs for planning but
without automatic pruning or using different pruning heuristic.
We conduct two experiments, one in two-dimensional maze
navigation domains and the other in high-dimensional visual
navigation domain, discussed as follows.

1) Exp2: Two-dimensional Navigation:
a) Task Domains: We use simple two-dimensional navi-

gation domains for this experiment (Figure 2), taken from the
SoRB source code2, described as follows.

Point Four Rooms [6]: Continuous state and action spaces.
Navigation. This is a simple two-dimensional navigation do-
main provided by Eysenbach et al. [6]. Each state in a two-
dimensional space is denoted as s = (x, y) ∈ [0, 55]2,
representing the location of the agent. The action space is
also continuous and each action is denoted as a = (dx, dy) ∈
[−1, 1]2, which indicates an incremental change in the state.
Random noise is added to the action with probability 0.1
to introduce stochasticity. The environment consists of four
rooms separated by walls (obstacles). The agent needs to
traverse across these rooms through connecting passages when
seeking a goal state. The default reward is −1 at each time
step and 0 only near the goal.

Point Maze [6]: Similar to Point Four Rooms except for
the placement of the obstacles (walls), as shown in Figure 2.

The hyper-parameters of LSGVP in both domains are as
follows: ϵ = 5, Q+ = 0, MAXDIST = 11, η = 3, ρ =
MAXDIST , |B| = 2000, |SG| = 2000.

b) Methods Compared: The task domains used for this
experiment do not contain intermediate positive rewards,
unlike Coin Gather (subsection V-A). Hence, the subgoal
sampling technique does not matter. The comparison is mainly
in terms of subgoal graph pruning.

Search on the Replay Buffer (SoRB) [6]: SoRB [6] is
previously discussed in subsection V-A. It has the same
training (subsection IV-A) and graph construction (subsection
IV-C) procedures as used in LSGVP. Moreover, both SoRB
and LSGVP use the similar implementation of the goal-
conditioned primitive action policy (DDPG actor [1]). The key
differences are that SoRB uniformly samples a predetermined
number of subgoals to construct the graph and does not prune
the graph. The sparsity of the graph is controlled by the
number of subgoals sampled.

Map-planner [8]: This method extracts salient subgoal
states from an experience buffer by using Farthest Point
Sampling (FPS) algorithm [12] and then constructs the subgoal
graph using distances estimated using a learnt Universal Value
Function (UVF) similar to the value function discussed in
subsection III-A. There is no graph pruning involved.

Sparse Graphical Memory (SGM) [9]: SGM is described in
subsection V-A2. It uses an automatic graph pruning heuristic

2https://github.com/google-research/google-research/tree/master/sorb

called cleanup. A random goal is selected in each iteration of
cleanup and a shortest path to the goal is planned over the
subgoal graph. If the agent cannot traverse a particular edge
on this path, it is treated as erroneous edge and removed. In
contrast, LSGVP uses a more rigorous back-and-forth edge
traversal to prune the erroneous edges (see example in Fig.
4). For this experiment, we set the dissimilarity threshold of
SGM as τa = 5.

We also compare the non-hierarchical Deep Deterministic
Policy Gradient (DDPG) method [1] with LSGVP, in which
the policy and the Q-value function are implemented as
DDPG actor and critic, respectively. This is the same as the
implementation of the primitive action policy and Q-value
function used by LSGVP.

c) Results and Analysis: Ten experiment trials are con-
ducted for each method. The composition of each trial is
shown in Table I. The training time for SoRB and Map-planner
are extended for fair comparison since LSGVP and SGM use
extra episodes of experience for pruning. In each training
episode for both task domains, the start state and the (shorter
horizon) training goal are randomly sampled from anywhere in
the state space. In each testing episode for Point Four Rooms,
the test goal is randomly sampled from anywhere in the state
space but the start state is randomly sampled from one of the
rooms not containing the goal, to ensure that the goal-reaching
horizon is long. Similarly, in each testing episode for Point
Maze, the test goal is randomly sampled from one of the ends
of the maze but the start state is randomly sampled from the
other end, to ensure that the goal-reaching horizon is long.

Table III shows the performance results for non-hierarchical
DDPG, LSGVP, SGM, and different versions of SoRB and
Map-planner with different number of subgoals (nodes) in the
graph. Less number of subgoals (nodes) imply more sparsity
of the subgoal graph. Only the best result is shown for each
method, corresponding to the best value of MAXDIST. It is
observed that denser SoRB and Map-planner graphs (e.g., Fig.
5 (a) and (c)) lead to higher success rates but also require
more planning time due to longer paths over the graphs. On
the other hand, sparser SoRB and Map-planner graphs (e.g.,
Fig. 5 (b) and (d)) reduce the average planning time but also
result in lower success rates. This is because the distance
cutoff for edge formation, that is, MAXDIST (subsection
IV-C), needs to be increased when the subgoals (nodes) are
sparsely distributed. This increases the chance of erroneous
edge formation across obstacles due to the mis-predicted
distances (equation 2). The SoRB and Map-planner agents do
not prune the graph and, therefore, have lower success rates.

In contrast, the LSGVP and SGM agents achieve higher
success rates while maintaining similar level of sparsity as
SoRB (100 nodes) and Map-planner (100 nodes), by auto-
matically pruning the erroneous edges in the sparse subgoal
graph. However, the graph pruning procedure of SGM (called
cleanup) only prunes the erroneous edges which are found
when traversing to random goals. In contrast, LSGVP uses
a more rigorous back-and-forth edge pruning procedure (sub-
section IV-E which covers more edges within same pruning
iterations. Therefore, as shown in Fig. 5 (e), the SGM graph

https://github.com/google-research/google-research/tree/master/sorb
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Point Four Rooms Point Maze VizDoom

Methods ↓ MAXDIST* Average
Success Rate

Average Planning
Time (in sec.) MAXDIST* Average

Success Rate
Average Planning

Time (in sec.)
Average

Success Rate
Non-hierarchical DDPG - 12.4 ± 3.3 - - 5.6 ± 2.4 -

SoRB (1000 nodes) 7 97.5 ± 4.6 9.95 ± 0.05 7 68.4 ± 6.2 10.1 ± 0.11 -
SoRB (500 nodes) 9 76.3 ± 4.6 5.02 ± 0.07 9 32.5 ± 7.6 5.21 ± 0.06 -
SoRB (100 nodes) 12 52.3 ± 4.7 1.01 ± 0.08 12 20.7 ± 4.3 1.10 ± 0.04 -

Map-planner (1000 nodes) 7 96.3 ± 4.2 9.76 ± 0.04 7 68.8 ± 5.9 9.8 ± 0.14 -
Map-planner (100 nodes) 12 49.4 ± 4.2 1.02 ± 0.06 12 18.3 ± 4.3 1.10 ± 0.06 -

LSGVP (Ours) 11 96.8 ± 3.6 1.03 ± 0.04 12 69.2 ± 5.5 1.11 ± 0.03 74.5 ± 9.6

SGM 11 94.7 ± 4.0 1.08 ± 0.04 12 64.3 ± 4.7 1.17 ± 0.05 68.7 ± 10.2
SPTM - - - - - - 52.4 ± 12.3

TABLE III: Exp2 and Exp3 results, taken as average across ten trials. *MAXDIST is a hyperparameter, not a performance metric.

Fig. 4: Example of LSGVP graph pruning.

still has a few erroneous edges which bring down the success
rate compared to LSGVP.

2) Exp3: High-dimensional Navigation: In this experiment,
we compare LSGVP with other subgoal graph-based planning
methods in a high-dimensional visual navigation domain Viz-
Doom [10]. The methods compared with LSGVP are discussed
below.

Sparse Graphical Memory (SGM) [9], described in subsec-
tions V-A2 and V-B1b.

Semi Parametric Topological Memory (SPTM) [7]: This
method is designed for long-horizon goal-reaching in environ-
ments with high-dimensional state spaces, where each state is
a first person view image observed by the agent. SPTM uses a
pre-trained Retrieval network (denoted as RtN in this paper)
to estimate the probability that two states are at most 20 time
steps apart. This means that for a pair of states si and sk,
RtN(si, sk) = 1 implies that the two states are at most 20
steps apart and a lower value of RtN implies that the two
states are farther than 20 steps. SPTM samples subgoals at a
uniform interval from the exploration trajectories.

The original SPTM [7] uses exploration trajectories gener-
ated by human demonstrators, whereas in this paper we use
random exploration for all methods. After uniform sampling,
consecutive subgoals and the subgoals with RtN value above
a threshold are connected via edges to form a subgoal graph.
The SPTM agent plans a path over this subgoal graph to reach
a long-horizon goal (given as an image). The traversal from
one subgoal/state to another subgoal/state is performed using
a pre-trained policy.

For this experiment, LSGVP and SGM use the same
pre-trained Retrieval network and policy as in SPTM3. In

3https://github.com/nsavinov/SPTM

(a) SoRB (1000 nodes) (b) SoRB (100 nodes)

(c) Map-planner (1000 nodes) (d) Map-planner (100 nodes)

(e) SGM Pruned. (f) LSGVP Pruned.

Fig. 5: Graphs learnt by different methods.

congruence with the RtN probability estimation, we redefine
the distance function used in LSGVP as D(si, sk) = 100
- 80×RtN(si, sk). Note that if we assume that the agent
receives a −1 reward at each time step, the cumulative reward
obtained when traversing from si to sk is higher if the states
are closer (that is, higher RtN ). Thus, the modified distance
is still inversely proportional to the cumulative reward. Apart
from this, the two main differences between SPTM and
LSGVP are that the subgoals are uniformly sampled in SPTM
whereas LSGVP discovers them using the path value-based
heuristic, and SPTM does not use automatic pruning. The

https://github.com/nsavinov/SPTM
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VizDoom task domain used for this experiment (discussed
below) does not include intermediate positive rewards, unlike
the Coin Gather domain. Therefore, the subgoal sampling
technique does not matter and the performance comparison is
mainly based on the effect of graph pruning.

a) Task Domain: VizDoom Navigation [7] (Figure 2):
High-dimensional continuous state space. Visual (image)
states. Discrete action space. Navigation. VizDoom is a
first-person game [10] with navigation and enemy-shooting
tasks. We focus on the navigation task for goal-reaching.
The agent is a player which observes its first-person view
as a 160 × 120 visual state (image). In this case, different
dimensions corresponding to the image pixel values. The
agent can take one of the following seven actions: Do nothing,
move forward, backward, left, right, turn left, and turn right. It
needs to navigate through a maze environment while seeking
a goal (specified as an image). Considering the modified
distance function D(si, sk) = 100 - 80×RtN(si, sk), the
LSGVP hyper-parameter values for this domain are set as
follows: ϵ = 60, η = 21 (RtN = 0.99), MAXDIST = 32 (RtN
= 0.85), ρ = MAXDIST, |B| = 10,000, and |SG| = 10,000.
For SGM, τa = 20 and MAXDIST = 32.

b) Results and Analysis: Ten experiment trials are con-
ducted for each method. The composition of each trial is
shown in Table I. There is no training phase for this experiment
since the retrieval network and policy network are pre-trained.
During the testing phase, four predefined test goals are used
for each method. Each testing trial consists of 96 episodes,
with 24 episodes per goal. The agent is successful if it
reaches the goal in an episode within 5000 steps. The testing
phase in each trial is preceded by exploration, subgoal graph
construction, and pruning (only in the case of LSGVP). The
trajectories gathered during exploration are subsampled to
create experience memory of size |B| = 10,000 for both
SPTM, LSGVP, and SGM. Then, LSGVP discovers around
2500 subgoals with ϵ = 60 as the threshold of dissimilarity
(similarly, SGM discovers around 2500 subgoals). In contrast,
SPTM extracts 2,500 subgoals via uniform interval sampling.

Since all the methods use a similar number of subgoals, the
sizes of their subgoal graphs are also similar. Hence, we do
not compare the them based on average planning time but only
on the basis of goal-reaching success rate, which is affected
by pruning. The results are reported in Table III. In this case,
the success rate is equal to the fraction of episodes in which
the agent reaches the goal, out of the 96 testing episodes per
trial. The average is taken across ten trials.

All three agents learn graphs with several erroneous edges
due to the noisy exploration data used for graph construction.
Since the SPTM agent does not prune the learnt graph, it
plans several infeasible plans for subgoal-to-subgoal traversal
across obstacles due to the erroneous edges. This results in
its lower success rate compared to the LSGVP and SGM
agents. As discussed in subsection V-B1c. LSGVP performs a
more thorough back-and-forth edge traversal for graph pruning
which leads to cleaner graph compared to SGM which does
pruning by traversing to random goals. Thus, SGM performs

worse than LSGVP in this domain as well.
Despite better performance of LSGVP, the noisy exploration

data becomes a limiting factor on the quality of the learnt
graphs and the maximum success rate achieved. Better explo-
ration strategies will be investigated in the future.

VI. CONCLUSION

This paper presents a method for long-horizon goal-reaching
via subgoal graph-based planning, called Learning Subgoal
Graph using Value-based Subgoal Discovery and Automatic
Pruning (LSGVP). LSGVP addresses two key challenges
concerning subgoal graph-based planning, specifically, dis-
criminating subgoals lying on higher cumulative reward paths
from other candidate subgoals during discovery and making
the subgoal graph robust against erroneously predicted edges
between subgoals.

To address the former issue, LSGVP uses a novel subgoal
discovery heuristic that finds the salient subgoals based on
their path values (subsection IV-B). To address the latter
issue, LSGVP uses an automatic graph pruning procedure
involving back-and-forth edge traversals across the subgoal
graph (subsection IV-E). Despite these benefits of LSGVP,
there are some key limitations that must be acknowledged,
as follows:

• LSGVP is not suitable for unbounded or infinite state
spaces which need to be continuously explored, or for
non-stationary environments because it requires subgoal
graph construction to be completed before the graph can
be used for goal-reaching via planning.

• LSGVP requires a default reward of −1 at each action
step. This essentially converts the goal-reaching problem
into a shortest-path learning/finding problem by default.
The application of LSGVP is limited to such problems.

• Despite the graph pruning procedure, LSGVP is still
susceptible to erroneous connections in the subgoal graph
due to sub-optimally learnt distance function (which
depends on the value function). More robust distance
functions need to be investigated.

Future Work: There are two key directions in which this
work can be extended. First, the integration of higher-level
planning with Hierarchical Reinforcement Learning (HRL) [4]
is important. Building a robust model for planning requires
extensive exploration. Integrating planning with HRL will
enable an agent to improve the task-execution policy during
exploration while simultaneously building the higher-level
model. This method will also be applicable to very large state
spaces, since the HRL policy can be learned even when the
planning model is incomplete.

Secondly, constructing subgoal graphs or other form of
planning models for visual navigation problems is challenging
and computationally expensive, due to the high-dimensional
states/observations (as images) and usually large state spaces.
A promising approach to scale robust model-construction to
high-dimensional visual spaces is self-supervised learning of
correlations or similarities among visual states [30]. Such a
self-supervised pre-trained model can complement value-based
subgoal sampling/discovery and lead to a model-construction
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approach that is scalable, has lower computational cost, and
is generalizable across various large visual spaces.
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