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Abstract—In complex multi-agent tasks, various agents must
cooperate to distribute relevant subtasks among each other in
order to efficiently achieve the joint task objectives. Multi-
agent Hierarchical Reinforcement Learning (MAHRL) provides
an approach for learning to select the subtasks in response to
the task environment states in a sequential decision manner.
Standard MAHRL relies on a shared task reward to train various
agents. This approach, however, has mostly been demonstrated
on homogeneous agents or agents without inter-dependencies.
When the joint task involves multiple agents of heterogeneous
capabilities, only a few agents might reach the rewarding states
in the task environment, while a certain subset of agents must
play intermediate roles to enable former agents. The task reward
becomes delayed or sparse for such intermediate agents which
slows down learning without the use of intermediate guiding
rewards. In this paper, we introduce a novel approach of
MAHRL called Inter-Subtask Empowerment based Multi-agent
Options (ISEMO) in which an Inter-Subtask Empowerment
Reward (ISER) is given to an agent for enabling the execution
of another agent’s subtask. This effect of one agent enabling
the subtask of another is named empowerment and used as
a basis for deriving the intermediate guiding rewards. ISER
is given in addition to the domain task reward in order to
improve the inter-agent coordination. ISEMO also incorporates
options model with parameterized subtask termination functions
to learn the dynamic termination of various subtasks and relax
the limitations posed by hand-crafted termination conditions.
Experiments in a spatial Search and Rescue domain show that
ISEMO can learn the inter-dependencies among agents during
intermediate stages of a task which are distant from the main
task’s rewarding states, and perform better than the standard
MAHRL technique called Cooperative HRL (CoHRL). It is
also shown that the dynamic termination further improves the
performance of ISEMO compared to CoHRL which uses non-
optimizable fixed termination rules.

Keywords—Multi-agent Coordination; Search & Rescue; Re-
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I. INTRODUCTION

Multi-agent Hierarchical Reinforcement Learning
(MAHRL) [1], [2] provides a framework for the division
of a complex joint task into simpler subtasks which can be
distributed among different agents. Subtasks are basically
temporally abstract actions in HRL, with a pre-defined plan
or learned policy to achieve a sub-goal. The core problem in
MAHRL is to learn an optimal high-level meta policy which
selects a subtask for an agent in response to an environment
state under the objective of the joint task coordination. In this
paper, we consider a coordination problem which involves
both homogeneous and heterogeneous agents with a set of pre-
defined subtask plans and the associated preconditions. In a
heterogeneous multi-agent system, an optimal decomposition

can improve the reachability of the main task goal when a
single agent is incapable of performing the entire task [3].

The primary challenge concerning MAHRL involving het-
erogeneous agents is to learn the inter-agent dependencies
which affect the coordinated performance. In a complex het-
erogeneous system, it is likely that only a subset of agents
reach the environment states which generate the task reward.
Other subset of agents might simply take intermediate roles
for creating the preconditions necessary to reach the rewarding
states. A simple example is of sequential dependency where
the subtask of an agent A creates preconditions necessary to
execute the subtasks of another agent B, while only agent B
can reach the rewarding states. The task reward, therefore,
might be too delayed for the former agent to learn appropriate
behaviour in a short learning period. The standard techniques
in MAHRL [1], [4] rely only on shared task reward to learn
coordination among homogeneous agents or among agents
without complex inter-dependencies. For a heterogeneous sys-
tem as discussed above, the task reward may be delayed or
sparse for certain agents or agent-specific reward engineering
may be required, both of which are undesirable.

A secondary issue concerns subtask commitment in a con-
tinuously changing environment. Subtask commitment refers
to the time duration for which a subtask is continued after its
selection/initiation. A subtask can only be initiated if its pre-
condition is satisfied. In a multi-agent dynamic environment,
the preconditions of the subtasks of an agent may change due
to concurrent operation of another agent. Assume that an agent
can choose between subtasks τ1 and τ2 but the preconditions
of τ2 are not satisfied initially. Hence, the agent chooses τ1.
During the execution of τ1, however, another agent performs
certain actions which enable the preconditions for τ2. Now,
whether the former agent continues with τ2 or terminates τ2
to make a subtask choice again itself becomes a decision
problem. In the previous MAHRL work [5], a dynamic termi-
nation is performed by interrupting a subtask before reaching
its (sub)goal state, but this termination decision is driven by
hand-crafted events. The key challenge here is that an early
termination exposes an agent to make stochastic choices from
the entire subtask set and increases the exploratory behaviour,
while a late termination restricts the choices and reduces the
exploration. Highly exploratory behaviour slows down the
learning process by delaying the completion of subtasks, while
low exploration may lead to biased and sub-optimal policies.
Therefore, hand-crafting the termination conditions demands
explicit knowledge of the joint task environment and how it
changes during the execution of the task.



To address these issues, we propose a new MAHRL ap-
proach named Inter-Subtask Empowerment based Multi-agent
Options (ISEMO). Our main contributions are as follows,
• We introduce Inter-Subtask Empowerment Reward

(ISER) as a guiding feedback for coordination when the
joint task reward may be too delayed to train certain
heterogeneous agents in a team. ISER is given as a pos-
itive reward to an agent that empowers another agent by
enabling the preconditions of the latter agent’s subtasks.
Moreover, an agent can also receive ISER for performing
a subtask which enables other subtask of its own. The
intuition is that in the absence of an immediate task
reward signal, an agent can use the criteria of expanding
the space of possible subtasks as a motivation. This
is loosely inspired by the concept of empowerment in
RL [6] through which an agent rewards itself for the
actions that lead to reachability of more future states. We
explore this in the context of subtasks and preconditions,
with an assumption that more subtask choices during the
exploration phase lead to better reachability to the states
with external task reward.

• We treat the termination decision as part of the learn-
ing problem to investigate its effect on the learning
performance of the agents. To achieve this, we incor-
porate learned termination conditions into MAHRL by
modelling the subtasks as Options with gradient-based
optimization of the subtask termination functions. The
optimization method is based on the single-agent option-
critic algorithm [7]. Learned termination mitigates the
restrictive need of the hand-crafted termination events or
rules.

ISEMO is tested on a customized Search & Rescue (S&R)
task in a two-dimensional spatial domain, involving multiple
heterogeneous (as well as homogeneous) agents cooperating to
rescue victims. It is compared against the standard MAHRL
method called Cooperative HRL (CoHRL) [1], [5]. ISEMO
learns the inter-dependencies among the subtasks of different
agents and improves their credit assignment when the task
reward is delayed or sparse. It results in better performance
compared to CoHRL in terms of lower victim death count.
The ISEMO method, the S&R setup, and the experiments are
discussed in section 4, section 5, and section 6, respectively.

II. PRELIMINARIES AND NOTATIONS

In this section, we discuss the basic concepts and notations
used in this paper.

A. Reinforcement Learning (RL)

RL is a learning mechanism for sequential decisions [8]
modeled using a Markov Decision Process (MDP) consist-
ing of an agent Ag with primitive (or single step) action
set Λ and environment observation states S. The MDP has
an underlying transition dynamics given by the probability
distribution P (s′|s, a)→ [0, 1] where s′ is the state observed
after taking action a in a state s. The agent takes actions using
an action policy π : S × Λ → [0, 1] and receives reward

r : S × Λ → R. The value of taking a ∈ Λ in state s ∈ S
is Qπ(s, a): E[

∑∞
t=0 γ

trt|s0=s, a0=a] where γ ∈ [0, 1) is a
discount factor. Usually, Q(s, a) is either a parametric or non-
parametric function which predicts the expected sum of future
rewards. In this paper, we use temporal difference (or TD)
learning in which the Q function is updated as Q(s, a) ←
(1−α)Q(s, a)+α(r+γmaxa′ Q(s′, a′)) where s′ is the next
state after (s, a) and α is a learning rate. For parametric Q
functions, the optimization is performed by minimizing the
loss L(θ) = (r + γmaxa′ Qθ(s

′, a′)−Qθ(s, a))2.

B. Semi-Markov Decision Process (SMDP)

SMDP extends the standard MDP model used in RL to
decisions over temporally abstract actions. A temporally ab-
stract action, denoted in this paper as τ , differs from the
primitive actions mainly in the sense that it is itself a plan or a
policy over primitive actions. The transition probabilities in a
SMDP are defined as P (s′|s, τ, n)×P (n|s, τ) where n is the
number of time steps for which the temporally extended action
τ lasts. The temporally extended action is formally defined
as τ :< Iτ , πτ , βτ > [9]. Here, πτ is either a learned or
pre-defined policy for τ , βτ : S → [0, 1] is a probabilistic
termination function for τ , and Iτ is the precondition for
initiating τ . This is the basic setting of Hierarchical RL (HRL)
in which a meta policy µ : S × Υ → [0, 1] learns to select
a temporally abstract action τ ∈ Υ. In this paper, we refer
to these temporally abstract actions as subtasks and learn the
policy µ using Options framework [9], [7] discussed later. The
preconditions and the policy of each subtask are pre-defined
but the meta policy to select each subtask and the terminations
of the subtasks are learned.

C. Multi-agent Hierarchical RL (MAHRL)

MAHRL [5] extends the basic Hierarchical RL mechanism
discussed above to multi-agent coordination problems. Each
agent Agi in a team of N agents has a corresponding set
of subtasks Υi. The core problem is to learn a set of meta
policies µ1, µ2, ..., µN for each agent such that coordination
is achieved to satisfy the joint task. The meta policy of an
individual agent Agi is defined as µi : Si×Υi → [0, 1]. A state
observation si ∈ Si consists of global observation features
φi from the perspective of the agent Agi and the subtask
choices of other agents, collectively denoted as τother. The
meta policy is guided by Q-value function Qi(φi, τother, τ i).
Each agent seeks to maximize the total expected return E[Ri =∑T
t=0 γ

trit] where the reward ri may contain only the joint
task reward or additional local rewards.

D. Options

The Option framework [9] is a general theoretical frame-
work for SMDPs and HRL. A fundamental difference in the
learning algorithm from the non-hierarchical RL discussed
above is that the target to update the Q function is modified
into:

y = r+γ((1−βτ (s′))Qθ(s
′, τ)+βτ (s′) max

τ ′
Qθ(s

′, τ ′)) (1)



where βτ (s′) is the probability of termination of τ in the next
state. The loss function is L(θ) = (y−Qθ(s, a))2. Therefore, if
an option does not terminate, its own future value is used in the
target to update its current value. Otherwise, the future value
of the best subtask in the next state (i.e. the maximum value)
is used. In this paper, the subtasks are technically options with
defined policies and preconditions. Therefore, we use the terms
subtask and option interchangeably.

III. RELATED WORK

Makar et al. [5], and in a successor work Ghavamzadeh et al.
[1], proposed a standard approach to MAHRL for cooperative
agents with each agent using a pre-defined subtask hierarchy.
Each agent learns its own Q-function which is conditioned
on the global state information and the subtasks chosen by
other agents. Inclusion of global information reduces the
non-stationarity [10] in the Q-value estimates faced by the
fully independent learning agents due to the effects of the
behaviour of other agents [11], [12]. We use similar setting
in our work, where each agent can observe the global en-
vironment and the agents communicate their subtask choices
with each other. This MAHRL technique has previously been
applied to Search & Rescue domain [13] but specifically
for semi-autonomous control where human operator decisions
are involved as elements in the subtask hierarchy. Macro-
actions or subtasks also facilitate multi-agent coordination in
decentralized partial observability settings [4]. In more recent
work, a feudal multi-agent hierarchy is proposed [14] which
functions with a centralized manager choosing joint subtasks
which are then passed to corresponding agents. All of these
methods, however, rely solely on a shared reward structure
among agents which is suitable for homogeneous or non-
dependent agents, but not for heterogeneous agents which
may have complex inter-dependencies making the task reward
delayed or sparse for certain agents. Inter-dependencies may
be captured by incorporating coordination knowledge. Co-
ordination information may be coded as task pre-requisite
rules with winner-take-all subtask selection heuristics [15].
Coordination graphs [16], [17] is another popular approach
used to define relations among agents. Intrinsic social motiva-
tion is used in [18], [19] to capture inter-agent influences, but
with domain-specific intrinsic reward design. Use of domain-
constrained knowledge allows reward engineering specific to
different agents at the cost of generality. In contrast, the inter-
subtask empowerment reward proposed in this paper applies
generally to different agents without agent-specific reward
engineering.

Apart from coordination, we also focus on a secondary issue
of termination conditions of various subtasks. Subtasks can
be terminated by comparing their Q-values to those of other
subtasks, as formulated in Option interruption rules in [9]. This
interruption mechanism is improved in [20]. In [21], the au-
thors propose gradient-based update of a termination function
within the Option framework. This adaptive termination has
been integrated into an HRL framework in Option-Critic (OC)
architecture [7]. These methods are applicable to single-agent

HRL and so far we are not aware of the use or investigation
of learned termination in MAHRL scenarios.

IV. INTER SUBTASK EMPOWERMENT BASED
MULTI-AGENT OPTIONS (ISEMO)

In this section, we describe the Inter Subtask Empower-
ment Reward (ISER) which can be used as an internal (and
intermediate) guiding signal for agents which do not directly
reach the rewarding states in the environment but enable the
subtasks for other agents. ISER can also be used by an agent
for enabling its own subtasks.

A. Subtask Preconditions

The calculation of ISER is based on the effect of one
subtask on the preconditions of another subtask. We define the
preconditions of a subtask using the state features. Suppose
any state st consists of a D dimensional feature vector
[x1,t, x2,t, ..., xd,t, ..., xD,t]. For a subtask τ , a precondition
is defined corresponding to each feature as pre(τ, xd,t, x̂d,t).
The precondition can be defined as xd,t being either greater
than, lesser than, or equal to x̂d,t. The inequality or equality
condition is specific to a τ, xd,t pair. If x̂d,t is none, then no
precondition exists for τ corresponding to that feature. The
preconditions are assumed to be already defined as part of
each subtask and for each agent. The collective precondition
for a particular subtask of agent Agi is defined as PRE(τ i) :
{pre(τ i, x1,t, x̂1,t), pre(τ i, x2,t, x̂2,t), ..., pre(τ i, xD,t, x̂D,t)}.
The subtask τ i can be selected/initiated only if the
preconditions corresponding to all the features are true.
Otherwise, the subtask is disabled and the meta policy µi

cannot select the subtask.

B. Inter Subtask Empowerment Reward (ISER)

ISER is used as a motivation signal for enabling any
precondition pre(τ i, xd,t, x̂d,t) ∈ PRE(τ i). The intuition is
that if one subtask enables a precondition of another subtask,
the chance of the latter subtask being executed increases. We
call this phenomenon empowerment in the context of the effect
of one subtask on another. In a cooperative setting in which
various subtasks contribute towards reaching the states where
a task reward can be achieved, the empowerment of a subtask
is a positive motivation as it might improve the reachability of
the rewarding task states in the future. When a precondition
pre(τ i, xd,t, x̂d,t) ∈ PRE(τ i) of an agent Agi is enabled,
it communicates ISER to the agent Agj which causes this
change in the precondition. In a spatial task such as Search
& Rescue which is considered for the experimentation, the
state features of the agent Agi are associated with different
regions on the spatial environment map. Moreover, the effects
of the actions of an agent are localized in the space. ISER,
therefore, is directly communicated to the agent Agj which
is in the immediate proximity of the region where the feature
xd,t is modified at the time instance when pre(τ i, xd,t, x̂d,t)
is enabled. The agent Agj , to which ISER is communicated,
allocates ISER to the state-subtask pair (sjt , τ

j
t ). More than one

preconditions in PRE(τ i) may be satisfied simultaneously.



In such case, the agent Agi communicates only one ISER
signal to each enabler agent (i.e., if one agent Agj enables
multiple precondition of Agi at time t, it still receives single
ISER signal). If Agj receives more than one ISER signals,
the ISER is normalized to 1. ISER is incorporated into the
reward function by weighted summation as Ri = w1 ×RiG +
w2 × ISER, where RiG is the main task reward observed by
the agent Agi. In a case of multiple agents being proximal
to the region where a feature change occurs, a false reward
assignment might happen. The probability of the repetition of
such assignment, however, is low if we consider that the same
situation may not appear frequently over the multiple episodes
of training used in RL/HRL. The ISER concept described
above is depicted concisely in Figure 1.

Fig. 1: The basic concept of ISER generation and sharing.

The ISER generation and communication described above
works under the following assumptions: (i) that the agent
Agi can observe the global spatial environment to detect
changes in its features and corresponding preconditions, (ii)
the agents can communicate with each other, and (iii) the
effect of the actions of an agent are spatially localized. Under
the second assumption of communication, agents can share
selective local observation (including their own positions)
with each other. When an agent receives local observations
from other agents, it consolidates these observations into the
global features [x1,t, x2,t, ..., xd,t, ..., xD,t] discussed above
which represent the joint situation. The assumption (iii) stated
above may not hold true for all kinds of tasks. For such
tasks, the determination of which subtask or agent enables
another subtask or agent has to be based on some form of
counterfactual reasoning [22], [23]. Such reasoning, however,
might require complex simulation models to evaluate multiple
counterfactual choices in parallel for a large number of agents.
We leave this investigation for the future work.

While the primary motivation behind ISER is to enable
credit assignment across different agents, it is also assigned
to a subtask performed by an agent Agi which enables the
precondition of another subtask of Agi itself. In this case,
communication of ISER is not necessary as it is local to the
agent Agi.

C. Multi-agent Options with learned terminations

The ISER signal discussed above can be incorporated into
the standard MAHRL methods [5], [1] which are originally
based on the MAXQ framework [24] but can be easily gen-
eralized to other HRL techniques such as Options [9], Feudal
learning [25], [26] etc. In this work, we choose the Options
framework as the basis for ISEMO. This choice is mainly
motivated by the provision of the gradient based optimization
of the subtask termination functions in the Option-Critic (OC)
framework [7] which is originally proposed for single agent
domains. In the OC framework, the termination probability of
a subtask τ in a state s is represented as βτ,ν(s). This is a
parameterized sigmoid function, with parameters ν which are
updated using the gradient rule: ν ← ν−αν ∂βτ,ν(s)∂ν (Q(s, τ) -
V (s)+η), where αν is the learning rate. Basically, the gradient
is scaled by the advantage (Q(s, τ) - V (s)) of performing
τ in state s over the value of the state V (s) which can be
taken as the maximum maxτ̂Q(s, τ̂) over all possible choices.
Therefore, if the advantage is positive, ν is shifted in the
direction which reduces the termination probability β (and
vice versa). Here, η is the switching penalty to prevent frequent
termination of options when the Q values are near zero in the
initial phases of learning [7], [27].

To adapt the OC framework to our multi-agent ap-
proach, the Q-function of each agent Agi is represented as
Qiθ(φ

i, τother, τ
i) where φi is environment feature observa-

tion and τother is a vector containing the subtask choices
of other agents to inform the agent about the ’intentions’
of other agents (similar to [1]). θ are the parameters of
Qi. Similarly, the termination functions take into account
the global information containing τother and are represented
as βiτ i,ν(φi, τother), thereby terminations can also occur in
response to the subtask choices of other agents. Both Q and
β functions are linear approximators trained via Stochastic
Gradient Descent (SGD). The β functions are trained using
the gradient rule discussed above, while the Q functions are
trained by the loss minimization as discussed under subsection
II(D). The reward function of each agent is Ri = w1 × RiG
+ w2 × ISER, where RiG is the task reward observed by the
agent Agi, which may be same across different agents.

V. SEARCH AND RESCUE (S&R) TASK

The setup of the Search & Rescue task is as follows: The
environment is represented as a two-dimensional situation map
M :{mpq|p = 1, 2, ..., P ; q = 1, 2, ..., Q} (Figure 2). Here,
mpq is the attribute value of a map cell at location (p,q) which
takes one of the following scalar values: unknown cell; victim
found, critical (default); victim stable, not relocated; Base
Station (contains Life Supply); vacant cell; debris (covering
victim); path blockage; wall; if an agent is at cell (p, q), then
the id of the agent. The initial global state is ∀(p, q), (mpq =
unknown). There are V randomly scattered but concealed
victims. Each victim v ∈ {1, 2, ..., V } has a health value Hv ,
and location vlocv . The Base Station location is BS. HBS

v

denotes the health of the victim v when the victim is relocated
to the Base Station. Until a victim is relocated, HBS

v = −∞.



Fig. 2: Map of indoor environment. White cells are obstacles, black
cells are vacant. Two victims are underneath debris. Red grids
represent regional blocks over which the main task can be parallel
decomposed.

At the start of S&R, a hypothetical health value H0 = +1 is
set, which decays over time at a rate of ψ1. The key events in
the task are as follows:

Discovery: victim v is discovered, Hv = H0, mvlocv =
critical victim, future decay rate = ψ1. Delivery of Life Supply
to v: mvlocv = stable victim, Hv ← Hv + 1, future decay rate
= ψ2. Carry victim v for relocation: Hv ← Hv + 1, future
decay rate = ψ3. Relocation done: vlocv = BS, HBS

v = Hv ,
future decay rate = 0. A victim dies if Hv ≤ 0. If so, Hv ←
Hv + 1 is impossible.

A. Feature Space

The map M is divided into k×k (e.g. k = 10) blocks. Each
block b approximates a small region of the map (Figure 2) and
the features in that region. An agent observes following global
and local/internal features:

[x1].b = fraction of block area occupied by unknown cells,
[x2].b = count of critical victims in the block,
[x3].b = average health of critical victims in the block,
[x4].b = minimum health among critical victims in the block,
[x5].b = count of stable victims in the block,
[x6].b = average health of stable victims in the block,
[x7].b = minimum health among stable victims in the block,
[x8].b = is the agent (self) at the search frontier in the block?

’internal’.
[x9].b = is debris present in the block?,
[x10].b = is blockage present in the block?,
x11 = self location,
x12 = quantity of carried Life Supplies ’internal’,
x13 = number of carried victims ’internal’

The features marked internal are not communicated
with other agents. Other features are shared
and collectively grouped into a vector φi =
{[x1, ..., x10].1, [x1, ..., x10].2, ..., [x1, ..., x10].k×k,
[x11, x12, x13]} for agent Agi. Finally, a vector τ iother
containing other agents’ locations and subtasks is added.
Concisely, the state of an agent Agi is si = {φi, τ iother}.

B. Agents and Subtasks

The subtasks available to different types of agents are
shown in Figure ??. In addition to the shown subtasks,
each agent can also choose a NONE subtask without any

precondition. The agent types are A1: Search, A2: Aid, A3:
Relocate, and A4: Helper. There can be multiple agents of
the same type (homogeneous). But more importantly, there is
heterogeneity in the nature of agents across different types,
with certain agents playing intermediate roles in helping other
agents reach the main task goals. The goals of the main task
are expressed in the form of task rewards. The agents of
Search type and the Helper agent share a terminal reward
RG = 1

Tsearch
× 1area searched=totalarea. Here, Tsearch is

total time taken to complete search, and the second term is
zero if the search is not complete by an episode termination.
The agents of type Aid, Relocate, and again, Helper share
a task reward RG = 1 upon the relocation of a victim to
the Base Station if the victim v is alive (Hv > 0) and
RG = −20 if the victim is dead. If multiple victims are
relocated simultaneously, then the rewards are summed. Both
types of rewards are scaled to 1. The evaluation of the task is
based on the count of dead victims. A rapid search combined
with timely relocation of all victims should result in minimum
deaths. The dependencies or enabling relations among various
subtasks are also depicted in Figure ??. A subtask is eligible to
receive ISER if it effects the enabling of certain precondition
of another subtask by modifying certain feature value.

VI. EXPERIMENTS AND RESULTS

For the experiments, the task configuration is: H0 = 1; ψ1

= 1
1500 , ψ2 = 1

2 × ψ1, and ψ3 = 1
10 × ψ1. These values are

set by trials to ensure that the main task is neither too simple
nor unsolvable within 500 training episodes. There are ten
victims to be discovered and rescued, with two victims under
debris. The victims locations are randomly set. We use four
agents of types A1, A2, and A3 each and one of type A4

(totally 13 agents). The agent types are shown in Figure ??.
The map dimension is 100×100 and it is divided into 10×10
blocks (i.e., k=10). The reward function of each agent Agi
is Ri(si, τ i) = 1000 ×RiG(si, τ i) + 1 ×ISER(si, τ i). The
discount factor is γ = 0.99. Each experiment is performed for
five runs of 500 episodes each, with 25000 decision steps (or
time steps) per episode. The performance measure for all the
experiments is the victim death count. ISEMO is compared
against the Cooperative HRL method [1] which is a standard
MAHRL approach. We refer to this method as CoHRL. Since
ISEMO differs from CoHRL in terms of both ISER and the
learned termination functions, we also implement a version
of CoHRL in which ISER is added (CoHRL+ISER) for
focused comparisons. The results are shown in Figure 3. It
can be observed that ISER alone significantly improves the
performance of CoHRL. ISEMO achieves the lowest death
count by combining ISER with dynamic subtask termination.
For CoHRL, the termination boundary of each subtask is
150 time steps after the start of the subtask. Discussion on
the effect of the termination boundaries is provided in the
subsection VI(C).



Search (A1) SCAN Scan over the line-of-sight with ra-
dial scan-line of length = 10 cells

PRE: [x8].b = 1
(i.e., the agent is at the frontier)

Search (A1) Move To Frontier (MTF) Move to the nearest unknown cell
within block b

PRE: [x1].b 6= 0, [x8].b = 0
(i.e. there is unknown frontier in
the block and the agent is not at
the block frontier)

Search (A1) SCAN Scan over the line-of-sight with ra-
dial scan-line of length = 10 cells

PRE: [x8].b = 1
(i.e., the agent is at the frontier)

Search (A1) Move To Frontier (MTF) Move to the nearest unknown cell
within block b

PRE: [x1].b 6= 0, [x8].b = 0
(i.e. there is unknown frontier in
the block and the agent is not at
the block frontier)

Search (A1) SCAN Scan over the line-of-sight with ra-
dial scan-line of length = 10 cells

PRE: [x8].b = 1
(i.e., the agent is at the frontier)

Search (A1) Move To Frontier (MTF) Move to the nearest unknown cell
within block b

PRE: [x1].b 6= 0, [x8].b = 0
(i.e. there is unknown frontier in
the block and the agent is not at
the block frontier)

Search (A1) SCAN Scan over the line-of-sight with ra-
dial scan-line of length = 10 cells

PRE: [x8].b = 1
(i.e., the agent is at the frontier)

Search (A1) Move To Frontier (MTF) Move to the nearest unknown cell
within block b

PRE: [x1].b 6= 0, [x8].b = 0
(i.e. there is unknown frontier in
the block and the agent is not at
the block frontier)

TABLE I: Blabla

Fig. 3: ISEMO is compared against a standard MAHRL technique
named CoHRL here. We observe improvement by just adding ISER
to CoHRL itself. However, ISEMO with both ISER and learned
terminations provides the best performance. The results are shown
for five runs with averaging over 10 episode window.

Fig. 4: This plot shows the effect of ISER on individual agents. The
worst performance bound is set by removing ISER for all agents and
the best bound is by original ISEMO. The results are shown for five
runs with averaging over 10 episode window.

A. Ablation experiments 1

Further ablation experiments are performed to determine
which agents are the most affected by ISER. For these
experiments, ISER is disabled for one type of agents while all
other types receive ISER. Suppose ISER is disabled for the
agents of type A1, then the method variant is named ISEMO-
NOISER-A1. Similarly, this applies for all the other types of
agents. It is observed that the effect of ISER as an intermediate
reward is not significant for the agents of type A3 (Relocate).
This is possibly because the Relocate type agents immediately
receive the task reward RG upon the relocation of one or more
victims. Therefore, even in the absence of ISER, these agents
receive correct reward for the RELOCATE subtask, while the
value can simply propagate to the CARRY subtask via Q-
updates. For the other types of agents, the effect of ISER
is more significant. The Search agents (type A1) do receive
a task reward for scanning (as discussed under subsection
V(B)) but only terminally, when the entire map has been
scanned. Therefore, ISER received during the intermediate
stages (Figure ??) still helps the scanning process by learning
to avoid the NONE action. The Aid agents (type A2) make
indirect contribution to the task reward generated upon the
relocation of the victims by enabling the subtasks of the agents
of type A3 (Relocate). Similarly, the Helper agent A4 takes
intermediate role by enabling other agents to perform subtasks
which ultimately lead to a task reward. The task reward,
therefore, is delayed or even sparse from the perspective of
the Aid and the Helper agents. ISER captures the inter-subtask
enabling roles of such agents and provides an intermediate
guiding signal to accelerate learning. This is observed in
Figure 4 as the agents of type A3 are the least affected by



ISER, with the performances of ISEMO-NOISER-A3 being
close to ISEMO. In contrast, more significant performance
deterioration is seen by the removal of ISER for other types
of agents.

B. Ablation experiments 2

We analyze the behavior of the Helper agent (A4) by
running tests on one of the training maps. In the first test
set (Figure 5), three different scenarios are shown in which
a search agent is close to the blockage and a helper agent
A4 is situated at three different locations. The probabilities of
the selection of different subtasks (calculated as the softmax
of Q(s, τ)) are also shown. The desired subtask is CLEAR
BLOCKAGE, because it enables A1 to perform SCAN. It
is observed that in all the three scenarios, the probability
distribution of the Helper agent trained using CoHRL is more
or less uniform over CLEAR BLOCKAGE and NONE (other
subtasks are masked as their preconditions are not satisfied in
this scenario). This is expected since the Helper agent gets no
reward for CLEAR BLOCKAGE during training as the task
reward is only terminally received. On the other hand, using
ISER as a motivation to enable the Search agent, the Helper
agent is able to figure out the correct choice when in proximity
to the blockage. This is observed in the case of ISEMO.

Fig. 5: Comparing the behavior of the Helper agent (Green) during
test runs in three different scenarios when a Search agent (Yellow)
is near a blockage. There is only one Helper agent but different
scenarios are shown in the same figure to save space. Refer subsection
VI(B) for details.

In the second test set (Figure 6), one Helper, one Search,
and one Aid agents are shown. Three scenarios are considered
in which Debris is discovered while the Aid agent is far. The
desired subtask is CLEAR DEBRIS to reveal a victim which
enables a subtask for the Aid agent. Once again, the Helper
agent trained with CoHRL fails to allocate higher probability
to the CLEAR DEBRIS subtask because the only relevant
task reward during training for this choice is that received
upon the relocation of the victim (hidden under the debris),
an event which is much delayed in the future because first the
Helper agent must clear debris, then the Aid agent delivers Life
Supply, followed by a Relocate agent performing relocation
which generates the task reward. Using ISER as the motivation
to enable the Aid agent, the Helper agent is able to figure out
the correct choice when neares to the debris than the blockage,
as observed in the case of ISEMO.

Fig. 6: Comparing the behavior of Helper agent (Green) during test
runs in three different scenarios when a Search agent (Yellow) and
Aid agent (Red) are present and Debris is found. There is only one
Helper agent but different scenarios are shown in the same figure to
save space. Refer subsection VI(B) for details.

C. Effect of Termination Condition

Figure 7 depicts the performance of ISEMO against
CoHRL+ISER with different termination boundaries. For
CoHRL+ISER itself the performance varies with the subtask
execution duration TM . For small duration of TM = 1 to
10, the agents fail to reach rewarding states. For higher TM
(around 150), the agents remain committed to the chosen
subtasks long enough to observe the rewards, and hence,
the performance is better. However, further increasing TM
degrades the performance due to the over-commitment to the
chosen subtasks (reduced exploration). The best performance
of CoHRL+ISER is for TM = 150. It is impractical to try all
the possible TM values exhaustively or to train a policy to
choose TM considering the output space complexity of such
a policy. ISEMO, in contrast, learns a continuous probability
function βτ (s) such that explicit duration need not be fixed.
For switching penalty η = 1, ISEMO performs worse than
CoHRL+ISER initially when β functions are being learned.
However, it converges to the lowest death count as training
proceeds. For this experiment, βτ i(si) is initialized to 0.3
∀Agi,∀τ i,∀si. A lower probability value ensures that ISEMO
executes subtasks for longer duration during initial training
phases so that sufficient rewards are visible.

VII. CONCLUSION

In this paper, we propose a Multi-agent HRL (MAHRL)
method for complex spatial domain tasks involving heteroge-
neous agents which might take intermediate roles by enabling
other agents to reach the rewarding states of the task and
themselves observe the task reward as delayed or sparse. The
reliance on a shared task reward, such as in the existing
MAHRL methods [5], [1], [4] may not be enough for fast
learning is such domains. Our method named Inter-Subtask
Empowerment based Multi-agent Options (ISEMO) consists
of an Inter-Subtask Empowerment Reward (ISER) which
captures the inter-dependencies among heterogeneous agents.
ISER is provided in addition to the global task reward based
on the criteria of empowering other agents by enabling the
preconditions of others’ subtasks. ISER is also allocated to a



Fig. 7: Performance of baseline CoHRL for different termination
boundaries v/s ISEMO with learned termination. For CoHRL, TM
is the number of time steps for which a subtask is held for execution
after starting. The results are shown for five runs with averaging over
10 episode window.

subtask which enables the preconditions of another subtask
of the same agent. The criteria of empowerment provides
a general basis for allocating intermediate rewards without
the agent-specific reward engineering. Furthermore, ISEMO
extends the learned subtask termination concept of single-
agent Option-Critic [7] to multi-agent setting using options,
and thereby, relaxes the limitation of the fixed pre-defined
termination boundaries. Experiments in a spatial Search &
Rescue domain show that agents trained by including ISER
perform better than a standard Cooperative HRL (CoHRL)
[1] technique as ISER facilitates better credit assignment
to agents than the delayed task reward. We also observe
further improvement in the performance with ISEMO using the
learned subtask-termination conditions. In the future, we plan
to develop ISEMO along the following directions: (i) inves-
tigate decentralized approaches with limited communication
in which case the ISER can only be communicated sparsely,
(ii) explore counterfactual reasoning to relax the assumption
of spatially localized effects of the agents’ actions used to
determine which agents should receive ISER, and (iii) explore
more end-to-end approaches in which the subtask policies and
preconditions are also learned.
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