
Hierarchical Reinforcement Learning: A Comprehensive
Survey

SHUBHAM PATERIA, Nanyang Technological University
BUDHITAMA SUBAGDJA, Singapore Management University

AH-HWEE TAN, Singapore Management University

CHAI QUEK, Nanyang Technological University

Hierarchical Reinforcement Learning (HRL) enables autonomous decomposition of challenging long-horizon

decision-making tasks into simpler subtasks. During the past years, the landscape of HRL research has grown

profoundly, resulting in copious approaches. A comprehensive overview of this vast landscape is necessary

to study HRL in an organized manner. We provide a survey of the diverse HRL approaches concerning the

challenges of learning hierarchical policies, subtask discovery, transfer learning, and multi-agent learning

using HRL. The survey is presented according to a novel taxonomy of the approaches. Based on the survey, a

set of important open problems are proposed to motivate the future research in HRL. Furthermore, we outline

a few suitable task domains for evaluating the HRL approaches and a few interesting examples of the practical

applications of HRL, in the Supplementary Material.

CCS Concepts: • Computing methodologies→ Reinforcement learning.

Additional Key Words and Phrases: hierarchical reinforcement learning, subtask discovery, skill discovery,

hierarchical reinforcement learning survey, hierarchical reinforcement learning taxonomy

ACM Reference Format:
Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek. 2023. Hierarchical Reinforcement

Learning: A Comprehensive Survey. 1, 1 (August 2023), 35 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
One of the cardinal goals of Artificial Intelligence is to develop autonomous agents which can

perform various complex tasks in an environment by planning the optimal sequences of actions

[31]. Reinforcement Learning (RL) is a computational paradigm for learning a policy that takes

optimal actions in various states of a task environment, so as to maximize the cumulative rewards

received by the acting agent [83]. In order to learn the optimal policy, the agent explores the state

and action spaces relevant to the task by executing various sequences of state-action-next state
transitions. The average length of such sequences

1
is called the task horizon. If the horizon is long

while the task involves large state and action spaces, then the exploration space also becomes large.

1
The length of a sequence is defined as the number of items in that sequence. In this case, an item is an action.

Authors’ addresses: Shubham Pateria, SHUBHAM007@e.ntu.edu.sg, School of Computer Science and Engineering, Nanyang

Technological University, 50 Nanyang Avenue, Singapore, 639798; Budhitama Subagdja, budhitamas@smu.edu.sg, School

of Computing and Information Systems, Singapore Management University, 80 Stamford Road, Singapore, 178902; Ah-

Hwee Tan, ahtan@smu.edu.sg, School of Computing and Information Systems, Singapore Management University, 80

Stamford Road, Singapore, 178902; Chai Quek, ashcquek@ntu.edu.sg, School of Computer Science and Engineering, Nanyang

Technological University, 50 Nanyang Avenue, Singapore, 639798.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

XXXX-XXXX/2023/8-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: August 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek

This results in the poor performance of the standard RL algorithms [4, 41, 52] on such long-horizon
tasks without sophisticated exploration techniques [93, 44, 64].

Hierarchical Reinforcement Learning (HRL) decomposes a long-horizon reinforcement learning

task into a hierarchy of subproblems or subtasks such that a higher-level policy learns to perform

the task by choosing optimal subtasks as the higher-level actions. A subtask may itself be a

reinforcement learning problem with a lower-level policy learning to solve it [34]. This hierarchy of

policies collectively determines the behaviour of the agent. Task decomposition effectively reduces

the original task’s long horizon into a shorter horizon in terms of the sequences of subtasks. This

is because each subtask is a higher-level action which persists for a longer timescale compared

to a lower-level action, a property which is often referred to as temporal abstraction [11, 20, 12].

Temporal abstraction can also enable efficient credit assignment over longer timescales [67]. At the

same time, a subtask may itself be easier to learn and the learned subtasks lead to more structured

exploration over the course of training of the HRL agent [93].

These aspects make HRL a promising approach to scale reinforcement learning to the long-

horizon tasks [5, 12, 67, 76]. HRL algorithms have been shown to outperform standard RL in several

long-horizon problems such as continuous control
2
[91, 76, 57], long-horizon games [50, 67], robot

manipulation [59, 99] etc. Different empirical studies find that the performance benefits of HRL are

primarily due to improved exploration using subtasks/subgoals [28, 93].

HRL research has progressed significantly in the past three decades, resulting in a profusion

of approaches that address a diversity of challenges such as learning the policies in a hierarchy,

autonomous discovery of subtasks, transfer learning, and multi-agent learning using HRL. This

causes significant difficulties in understanding the progress in the field in an organized manner.

Hence, there is a necessity for a comprehensive survey to collect and organize the important HRL

approaches, and to provide a general taxonomy for their classification.

What are the differences between this survey and the previous ones? Barto et al [20] pro-

vided a survey of the advances in HRL up to the year 2003. That survey includes an important

overview of the classical approaches, mainly MAXQ [12], Options [11], and HAMs [10]. Significant

developments have occurred in the field of HRL since the time of that survey, such as subtask

discovery using graph analysis, variational inference, autoencoding, unified HRL, subtask discovery

in multi-agent HRL, transfer learning with HRL etc. Our survey mainly differs from that of Barto

et al [20] in the sense that we review the new HRL approaches which have emerged after their

survey in addition to the classical approaches covered by them. Al-Emran et al [40] performed

a survey from the perspective of the practical applications of HRL. However, it does not include

several important approaches which do not apply to the chosen applications, such as the recent

unified HRL techniques, transfer learning with HRL, multi-agent HRL etc. In contrast, we survey

the HRL approaches broadly and provide a general taxonomy which is application-agnostic.

The most recent survey by Mendonca et al [92] gives a detailed review of the graph-based

approaches for subtask discovery. Due to this limited scope, their survey goes into the depths of

the graph-based subtask discovery but excludes other important aspects of HRL research such as

the techniques for learning a hierarchy of policies, subtask discovery using variational inference,

unified HRL, transfer learning with HRL, multi-agent HRL etc. On the other hand, we review all

such approaches along with the graph-based subtask discovery (subsection 3.3.1) in the spirit of

providing a broader view of the HRL research.

2
An agent uses a continuous action space instead of a discrete set of actions.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Hierarchical Reinforcement Learning: A Comprehensive Survey 3

Contributions of this survey. The objective of this survey is to thoroughly review the liter-

ature on Hierarchical Reinforcement Learning (HRL) and provide a panorama of the approaches

developed so far. The key contributions are as follows:

(1) We conduct a comprehensive survey of the work done so far in the field of HRL. The survey

includes the approaches for learning hierarchies of policies, independent subtask discovery,

unified HRL, multi-task/transfer learning with HRL, and multi-agent HRL.

(2) We provide a novel taxonomy to organize the HRL approaches along important characteristic

dimensions such as single-agent vs multi-agent, single-task vs multi-task, and without subtask

discovery vs with subtask discovery.

(3) We identify a set of important open problems to provide the directions for future research

concerning the scalability, efficiency, and theoretical robustness of HRL.

Our endeavour is to make this survey as comprehensive as possible with regard to the overview and

classification of the HRL research in general, rather than the review of all the specific approaches

in existence. The HRL literature is too vast to cover in a limited number of pages. Therefore, the

main representative approaches for each class have been included in the survey while other similar

approaches have been left out to conserve space.

The rest of the paper is organized as follows. In section 2, we review the general concepts of

reinforcement learning, task decomposition, and HRL. Section 3 presents the taxonomy and survey

of various HRL approaches along with the broad challenges addressed by them. Section 4 contains

a discussion on the important open problems for future research on HRL. Finally, we conclude

the survey in section 5. In addition to this paper, we provide a Supplementary Material document

which outlines a few task domains for evaluating and benchmarking HRL approaches, and contains

a few interesting examples of the practical applications of HRL in the real-world problems.

2 PRELIMINARIES
2.1 Reinforcement Learning
Reinforcement Learning (RL) refers to learning how to take actions in different states of an envi-
ronment so as to maximize cumulative future reward [83], where the reward is a form of feedback

associated with a task and received in response to an action. The majority of the current RL research

is built upon the theory of Markov Decision Processes (MDPs) [1]. An MDP is control process

defined using a tuple < 𝑆,𝐴, 𝑃, 𝑟 >. Here, 𝑆 is the state space of the environment, where a state

𝑠 ∈ 𝑆 represents a situation of the environment. 𝐴 is the set of actions which can be taken by an

agent. 𝑟 : 𝑆 ×𝐴 → R is the numerical reward obtained as a function of state and action. The effect of

an action on the future state is captured by a probabilistic transition function 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) → [0, 1]
where 𝑠𝑡+1 ∈ 𝑆 is the next state observed after taking action 𝑎𝑡 ∈ 𝐴 in a state 𝑠𝑡 ∈ 𝑆 at time 𝑡 . An

MDP is stochastic if there exists a state-action pair (𝑠𝑡 , 𝑎𝑡) for which 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) ≠ 1, because the

effect of an action is not deterministic. Contrarily, an MDP is deterministic if for every state-action

pair (𝑠𝑡 , 𝑎𝑡), 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) = 1. The agent takes actions according to a policy 𝜋 : 𝑆 ×𝐴 → [0, 1]. This
policy may be stochastic.

One step of interaction between the agent and the environment produces a transition from current

state 𝑠𝑡 to next state 𝑠𝑡+1, observed as an experience data sample (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1). A sequence of such

transitions constitutes a trajectory. The trajectory taken from any starting state and action pair

(𝑠𝑡 , 𝑎𝑡) is affected by the stochasticity in the policy and in the state transitions (as per 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)).
Thus, the value of taking 𝑎𝑡 in 𝑠𝑡 is formally calculated as the expected (or average) cumulative

, Vol. 1, No. 1, Article . Publication date: August 2023.

4 Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek

reward obtained over all possible trajectories, as follows:

𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) = 𝑟 (𝑠𝑡 , 𝑎𝑡) + E𝑎∼𝜋 (𝑠) [
∞∑
𝑖=1

𝛾𝑖𝑟 (𝑠𝑡+𝑖 , 𝑎𝑡+𝑖) |𝑠𝑡 , 𝑎𝑡] (1)

Here, 𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) is called the Q-value of the state-action pair while an agent follows a policy 𝜋 .

𝛾 ∈ [0, 1) is called the discount factor. 𝑎 ∼ 𝜋 (𝑠) implies that an action is sampled using the policy 𝜋 .

The core objective of RL is to learn an optimal policy 𝜋∗
which satisfies the following condition:

𝜋∗ = argmax

𝜋
𝑄𝜋 (𝑠, 𝑎), ∀𝑠 ∈ 𝑆,∀𝑎 ∈ 𝐴 (2)

2.2 Hierarchical Reinforcement Learning
It can be inferred from equations 1 and 2 that the objective of an RL agent is to search for a policy

which maximizes the cumulative reward averaged over various possible trajectories the agent can

take while following that policy. While exploring the state and action spaces to learn the optimal

policy, the agent takes various trajectories whose expected length is the task horizon (the horizon

is shown as theoretically infinite in equation 1, but in practice it may be finite). As mentioned in

section 1, when the state and action spaces are large, and the task horizon is long, the exploration

becomes challenging using the standard RL approach [93, 44, 64].

Hierarchical Reinforcement Learning (HRL) provides a mechanism to perform a challenging task

by decomposing it into simpler subtasks using a hierarchy of policies learned via reinforcement

learning. In such a hierarchy, the highest-level policy generally chooses the subtasks of the main

task as its actions [34, 12]. This policy is trained to perform the main task in terms of the sequence

of its subtasks, using the rewards obtained in the main task. At a lower-level in the hierarchy, a

subtask chosen by the higher-level is itself a reinforcement learning problem. A lower-level policy

learns to perform that subtask using the internal rewards related to it (optionally, the main task

reward may also be added). The lowest-level policies choose the basic actions which are henceforth

referred to as primitive actions.
The process of HRL is illustrated in Fig. 1 using an example of task decomposition given by

Russell et al [31]. In this illustration, an HRL agent decomposes and performs a long-horizon task

"Going to Hawaii" (GTH). The HRL agent is composed of a hierarchy of policies. The task policy

𝜋𝐺𝑇𝐻 decomposes the original task GTH into a sequence of highest-level subtasks "Book Tickets"

(BT), "Go To Airport" (GTA), and so on. The task policy initially chooses BT. Then, BT is executed

for multiple time steps until its termination occurs at time 𝑇3. During this period, the policy of the

subtask BT, i.e. 𝜋𝐵𝑇 , itself chooses different shorter subtasks sequentially. These are "Open Booking

Website" (OBW), "Enter Flight Information" (EFI), and so on. After BT terminates at 𝑇3, the task

policy chooses GTA, which itself chooses a shorter subtask "Go to Taxi Stand" (GTS). During each

time step, a primitive action 𝑎 is chosen by the lowest level subtask policy, for e.g. by 𝜋𝑂𝐵𝑊 , 𝜋𝐸𝐹𝐼 ,

𝜋𝐺𝑇𝑆 etc. The HRL agent receives a task reward 𝑟𝐺𝑇𝐻 in response to the primitive action, which is

accumulated and given at different time-scales to different levels. The task reward may be optional

for the policies below the highest level, which can be trained using the subtask-related rewards. In

this manner, the HRL process continues in time until GTH finishes.

2.2.1 Formal definition of a subtask. The definition of a subtask in the formal context of HRL is

provided in this subsection. This definition is a culmination of the different ways in which different

HRL approaches define the subtasks. Hence, it should be considered as a general definition. A
particular HRL approach may only use selective components of the general definition. The specifics

are further discussed in section 3.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Hierarchical Reinforcement Learning: A Comprehensive Survey 5

Fig. 1. The temporal process of Hierarchical Reinforcement Learning.

Firstly, we denote the main long-horizon task as Γ and the task policy as 𝜋Γ . The task policy is

at the top of a hierarchy, for e.g. 𝜋𝐺𝑇𝐻 in Fig. 1. A subtask is denoted as 𝜔 . It is defined using the

components described as follows.

• 𝜋𝜔 , which is the policy of the subtask. It maps the environment states to primitive actions

or to the subtasks of 𝜔 [11, 12].

• The objective components:
– 𝑟𝜔 , which is the subtask reward used to train 𝜋𝜔 . This is typically different from the reward

associated with the main task [12, 5, 76, 67, 50],

– 𝑔𝜔 , which is a subgoal or a set of subgoals associated with 𝜔 . A subgoal might be a state

𝑠 ∈ 𝑆 itself [15, 29, 19], an abstract form of a state [76, 91], a learned embedding [67, 77, 82]

etc. The reward 𝑟𝜔 might be defined with respect to the subgoal(s).

• The execution components:
– 𝐼𝜔 , which is the initiation condition of 𝜔 . It may be defined as a set of states in which 𝜔 can

be chosen for execution [11, 12], as a function which modulates the probability of choosing

𝜔 in a particular state [101], as a set of logical conditions [94] etc.

– 𝛽𝜔 , which is the termination condition of 𝜔 . It may be defined as a set of states in which

𝜔 should terminate if it is being executed [12, 5, 50], as a function which modulates the

probability of terminating 𝜔 in a particular state [11, 56], as a fixed time-limit [91, 76] etc.

If 𝑔𝜔 is defined, then the subgoal state is also usually included as a state in which 𝜔 must

terminate [12, 50].

In the remainder of this paper, the term ’subtask’ should be inferred as referring to this formal

definition.

2.2.2 Formalism of HRL based on Semi-markov Decision Process. HRL is formalized on the basis of

the theory of Semi-Markov Decision Process (SMDP) [32]. An SMDP is a stochastic control process

similar to an MDP (subsection 2.1), but unlike MDP, it also involves the concept of time for which
an action is executed after it has been chosen. In the context of HRL, the actions with the concept of

time are the subtasks. Starting from a state 𝑠𝑡 ∈ 𝑆 , assume that an agent chooses a subtask 𝜔𝑡 ∈ Ω,
where Ω is the set of subtasks (or the subtask space). Then, the transition function of the SMDP is

defined as a joint distribution

𝑃 (𝑠𝑡+𝑐𝜔𝑡
, 𝑐𝜔𝑡

|𝑠𝑡 , 𝜔𝑡) = 𝑃 (𝑠𝑡+𝑐𝜔𝑡
|𝑠𝑡 , 𝜔𝑡 , 𝑐𝜔𝑡

)𝑃 (𝑐𝜔𝑡
|𝑠𝑡 , 𝜔𝑡) (3)

, Vol. 1, No. 1, Article . Publication date: August 2023.

6 Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek

Here, 𝑐𝜔𝑡
denotes the number of time steps for which 𝜔𝑡 is executed, starting from the state 𝑠𝑡 . 𝑐𝜔𝑡

is actually determined by the termination condition 𝛽𝜔𝑡
which is one of the execution components

defined in subsection 2.2.1.

The reward obtained in response to performing the subtask 𝜔𝑡 starting from state 𝑠𝑡 is denoted

as 𝑅(𝑠𝑡 , 𝜔𝑡), calculated as follows,

𝑅(𝑠𝑡 , 𝜔𝑡) = E𝑎∼𝜋𝜔𝑡 (𝑠) [
𝑐𝜔𝑡 −1∑
𝑖=0

𝛾𝑖𝑟 (𝑠𝑡+𝑖 , 𝑎𝑡+𝑖) |𝑠𝑡 , 𝑎𝑡 = 𝜋𝜔𝑡
(𝑠𝑡)] (4)

Equation 4 indicates that the reward 𝑅(𝑠𝑡 , 𝜔𝑡) is equal to the expected cumulative reward obtained

while following the subtask policy 𝜋𝜔𝑡
from time 𝑡 until the termination of 𝜔𝑡 after 𝑐𝜔𝑡

time steps.

Now, an optimal task policy would be the one which leads to the following desired maximum

Q-value:

𝑄 (𝑠𝑡 , 𝜔𝑡) = 𝑅(𝑠𝑡 , 𝜔𝑡) +
∑

𝑠𝑡+𝑐𝜔𝑡
,𝑐𝜔𝑡

𝛾𝑐𝜔𝑡 𝑃 (𝑠𝑡+𝑐𝜔𝑡
, 𝑐𝜔𝑡

|𝑠𝑡 , 𝜔𝑡) max

𝜔𝑡+𝑐𝜔𝑡

𝑄 (𝑠𝑡+𝑐𝜔𝑡
, 𝜔𝑡+𝑐𝜔𝑡

) (5)

∀𝑠 ∈ 𝑆 and ∀𝜔 ∈ Ω.
It should be noted that the Q-value in equation 5 also depends on𝑅(𝑠𝑡 , 𝜔𝑡) and 𝑃 (𝑠𝑡+𝑐𝜔𝑡

, 𝑐𝜔𝑡
|𝑠𝑡 , 𝜔𝑡).

These two quantities are determined by the execution of 𝜔𝑡 using its policy 𝜋𝜔𝑡
. Therefore, an

agent actually needs to learn multiple policies at different levels of a task decomposition hierarchy,

including 𝜋Γ and the policies of all the subtasks (e.g., Fig. 1). We extend the notations of subtasks

and policies for a multi-level hierarchy as defined below. Please refer to Fig. 2 for an example of

these notations in the context of an HRL agent with a three level hierarchy.

• 𝜔𝑙
: a subtask at level 𝑙 of the hierarchy,

• Ω𝜔𝑙 : set of subtasks under the subtask 𝜔𝑙
such that 𝜔𝑙−1 ∈ Ω𝜔𝑙 ,

• 𝜋𝜔𝑙 : 𝑆 × Ω𝜔𝑙 → [0, 1] : policy of the subtask 𝜔𝑙
. In other words, 𝜔𝑙−1

is chosen by 𝜋𝜔𝑙 ,

• Ω𝜔1 = 𝐴, i.e., the output space of a subtask at the lowest level (𝑙 = 1) is the primitive action

space 𝐴,

• 𝜋Γ and ΩΓ denote the main task policy and the set of subtasks at the highest-level, respectively.

Consolidating all the definitions provided above, there are two principal parts of an HRL agent:

• Subtask space (Ωℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦). This is the super-set of all the subtasks used in a hierarchy, i.e.

Ωℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 = {Ω𝜔2 ,Ω𝜔3 ,Ω𝜔4 , ...,ΩΓ}.

• Hierarchical policy (𝜋ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦). The primitive action taken by the HRL agent is the result

of the recursive choices of subtasks. Consider the three level hierarchy depicted in Fig. 2. In

this hierarchy, the main policy 𝜋Γ chooses a level 2 subtask, i.e. 𝜔
2 = 𝜋Γ (𝑠) where 𝜔2 ∈ ΩΓ .

The policy of 𝜔2
is executed until its termination as per 𝛽𝜔2 . It chooses the lowest-level

subtask𝜔1 = 𝜋𝜔2 (𝑠) where𝜔1 ∈ Ω𝜔2 . The policy of𝜔1
is executed until its termination as per

𝛽𝜔1 . This lowest-level policy selects a primitive action, i.e. 𝑎 = 𝜋𝜔1 (𝑠). This complete state-
to-subtask-to-action mapping from 𝜋𝜔1 is called the hierarchical policy, denoted as 𝜋ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 .

Now, the primitive action taken by the HRL agent as a whole can be equivalently expressed

as 𝑎 = 𝜋ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 (𝑠). This description can be extrapolated to the hierarchies with more than

three levels.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Hierarchical Reinforcement Learning: A Comprehensive Survey 7

Fig. 2. The concept of a Hierarchical Reinforcement Learning agent. This illustration is for a three
level hierarchy, but the concept can be extrapolated to more than three levels.

Based on the definitions provided above, the expected discounted cumulative reward received by

the HRL agent can be written as,

𝑄ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 (𝑠𝑡 , 𝑎𝑡) = E𝑎∼𝜋ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 |Ωℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦
[
∞∑
𝑖=0

𝛾𝑡+𝑖𝑟 (𝑠𝑡+𝑖 , 𝑎𝑡+𝑖) |𝑠𝑡 , 𝑎𝑡] (6)

where 𝑎 ∼ 𝜋ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 |Ωℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 indicates that a primitive action 𝑎 is sampled using the hierar-

chical policy 𝜋ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 conditioned on the available subtask space Ωℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 .

2.2.3 Problem definition of HRL. The general problem definition of HRL is to find the optimal

hierarchical policy 𝜋∗
ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦

and the optimal subtask space Ω∗
ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦

as the solution to:

Ω∗
ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦

, 𝜋∗
ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦

= 𝑎𝑟𝑔𝑚𝑎𝑥Ωℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦
𝑎𝑟𝑔𝑚𝑎𝑥𝜋ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 |Ωℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦

𝑄ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 (𝑠, 𝑎) ,∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴

(7)

The HRL problem expressed in equation 7 can be divided into two parts. The first part is learning
hierarchical policy which refers to finding the optimal hierarchical policy conditioned on the

available subtask space (i.e. 𝑎𝑟𝑔𝑚𝑎𝑥𝜋ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 |Ωℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦
). This is essential because the hierarchical

policy determines the behaviour of an HRL agent on any given task. The policies at various levels

of 𝜋ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 can be learned simultaneously in an end-to-end manner [91, 76, 51, 12, 56] or they may

be learned one level at a time, in a bottom-to-top manner [59, 63, 57]. The second part is subtask
discovery which refers to automatically finding the optimal subtask space using the HRL agent’s

experience data (i.e. 𝑎𝑟𝑔𝑚𝑎𝑥Ωℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦
). Subtask discovery is not essential because a subtask space

could be handcrafted using precise domain knowledge. However, it is necessary for generalized

HRL without dependence on the manual handcrafting.

, Vol. 1, No. 1, Article . Publication date: August 2023.

8 Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek

2.3 Definitions of common terms and concepts
A few important terms and concepts which appear commonly in the rest of this paper are defined

here.

Skill. A ’skill’ is a semantic term for referring to a primitive action policy learnt to perform a

subtask, in the sense that such a policy represents the ability of an agent to do something well.
Universal policy. In this paper, a ’universal policy’ means a policy which can learn all the possible

subtasks by taking the corresponding subgoals [5, 67, 91] or instructions [89] as input, i.e. 𝜋𝜔 (𝑠) =
𝜋 (𝑠, 𝑔𝜔), where 𝜋 (𝑠, 𝑔𝜔) is the universal policy.

State abstraction. A state abstraction is a mapping, say 𝜙 , that maps the original state space 𝑆 to

some finite lower-dimensional abstract space. If 𝜙 (𝑠) = 𝜙 (𝑠 ′) for a pair 𝑠, 𝑠 ′ ∈ 𝑆 , then the two states

in the original state space are represented by the same state in the abstract space.

Reward abstraction. A reward abstraction means that the rewards given as part of the main task

are hidden from the subtask policies and only received by the highest-level policy.

’Global’ initiation condition. In the case of definition of a subtask in the tables provided in section

3, wherever the term ’global’ is used in reference to the initiation condition 𝐼𝜔 , it means that the

subtask can be chosen for execution in any of the states in the global state space.

3 APPROACHES FOR HIERARCHICAL REINFORCEMENT LEARNING

Fig. 3. A taxonomy of HRL approaches. The approaches are arranged along the following three dimensions:
with or without subtask discovery, for single agent or multiple agents, and for single task or multiple tasks.

This section presents the review and classification of a wide range of approaches developed for

Hierarchical Reinforcement Learning. The review is structured according to a novel taxonomy

, Vol. 1, No. 1, Article . Publication date: August 2023.

Hierarchical Reinforcement Learning: A Comprehensive Survey 9

depicted in Fig. 3. To design this taxonomy, the surveyed HRL approaches are arranged along three

independent dimensions, which are as follows: 1. Approaches with subtask discovery or without it.

2. Approaches for training single agent or multiple agents. 3. Approaches for learning on single task

or multiple tasks. There can be eight possible divisions (octants) of this three-dimensional space.

We identify that the majority of the HRL approaches lie in six of these divisions. The approaches

are further grouped into five major classes - LHP, UNI, ISD, MAHRL, and TransferHRL, based on

the broad challenge addressed by them. The divisions and classes are as follows:

(1) Single agent, single task, without subtask discovery: The approaches in this division are grouped
into a major class called Learning Hierarchical Policy (LHP). The LHP approaches address the

challenge of learning the hierarchical policy 𝜋ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 of an HRL agent without concerning

with subtask discovery. They use handcrafted subtasks.

(2) Single agent, single task, with subtask discovery: The approaches in this division are grouped

into two major classes. The first class is called Learning Hierarchical Policy in Unification with
Subtask Discovery (UNI). The UNI approaches address the challenge of learning the subtask

space Ωℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 and the hierarchical policy 𝜋ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 in a unified or end-to-end manner.

The second class is called Independent Subtask Discovery (ISD). The approaches in this class

address the challenge of discovering task-agnostic subtasks independently from any specific

task. The subtask discovery is usually performed in a pre-training stage and then the subtasks

are used to learn HRL agents on downstream tasks.

(3) Multiple agent, single task, without subtask discovery.
(4) Multiple agent, single task, with subtask discovery.

The approaches in divisions 3 and 4 are grouped into one class called Multi-Agent HRL
(MAHRL). The MAHRL approaches broadly address the challenge of learning to coordinate

among multiple HRL agents on a single joint task.

(5) Single agent, multiple tasks, without subtask discovery.
(6) Single agent, multiple tasks, with subtask discovery.

The approaches in divisions 5 and 6 are grouped into one class called Transfer learning with
HRL (TransferHRL). The TransferHRL approaches broadly address the challenge of learning

to transfer the hierarchical policy, subtasks, or other knowledge of an HRL agent across

multiple tasks, where the subtasks may be handcrafted or discovered from scratch on multiple

tasks.

We could not find considerable work in the remaining two divisions which represent the ap-

proaches formultiple agents, multiple tasks, with/without subtask discovery. A detailed discussion on

the above-mentioned major classes, their associated challenges, and the approaches which address

those challenges is provided in the following subsections. Before proceeding, we encourage the

reader to recall the important definitions of the common terms provided in subsection 2.3.

3.1 Learning Hierarchical Policy (LHP)
This subsection reviews the approaches which address the challenge of learning the hierarchical

policy 𝜋ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 , without subtask discovery, for single agent and single task setting. Learning the

hierarchical policy is a non-trivial challenge even when the subtasks are handcrafted. This is because

any approach to learn a hierarchical policy must tackle the following key issues: carefully designing

the algorithm to learn the policies at various levels of the hierarchy (including reward propagation,

value function decomposition, state/action space design etc.), dealing with non-stationarity due to

simultaneously changing policies, ensuring the optimality of the hierarchical policy as a whole,

interpretability of the hierarchical policy, among other issues. Please refer to Table 1 for a summary

of the LHP approaches.

, Vol. 1, No. 1, Article . Publication date: August 2023.

10 Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek

The LHP approaches can roughly be put into two sub-classes. The first sub-class is called feudal
hierarchy, in which the action space of a higher-level policy consists of subgoals corresponding

to various subtasks. A subgoal chosen by the higher-level policy is taken as input by a universal

policy
3
at the lower-level. The objective of this lower-level universal policy is to achieve the input

subgoal. The universal policy at each level can be treated as a sub-agent (as part of the HRL agent)

which can perform all the possible subtasks at that level. This leads to the feudal concept of a
"manager" sub-agent (higher-level policy) directing a "worker" sub-agent (lower-level policy) [5, 50,

76]. The corresponding approaches are discussed in subsection 3.1.1.

The second sub-class is called policy tree. This name is introduced for the purpose of classification

in this survey, and it may not be found in the HRL literature. In a policy tree, the action space

of a higher-level policy consists of the different lower-level policies of subtasks. The subtasks are
not represented by a single universal lower-level policy, rather each subtask has a separate policy.

The higher-level policy and the various lower-level policies form a ‘tree’. The higher-level policy

selects a lower-level policy directly for execution without intermediate subgoals [11, 12, 10]. The

corresponding approaches are discussed in subsection 3.1.2.

3.1.1 Feudal Hierarchy Approaches. Dayan and Hinton [5] introduced the foundational feudal

hierarchy called Feudal Reinforcement Learning (Feudal RL). Feudal RL is briefly described as

follows: a higher-level manager sets a subtask which is to be executed by a lower-level worker.

This is a pairwise relation such that the worker becomes the manager of the level below it, if the

hierarchy has more than two levels. The manager communicates the subtask to the worker via

a subgoal, where a subgoal is simply a state in the original or abstract state space. The objective

of the worker is to reach the given subgoal. The worker at each level is a universal policy. The

task reward may only be observed by the manager at the highest-level while the workers at other

levels learn using the rewards for reaching the subgoals. The authors evaluate Feudal RL on a maze

navigation task in a grid-world environment using predefined states at different spatial distances

as subgoals. Feudal RL converges to a shorter path to a main goal state in the maze faster than the

standard Q-learning. Rest of the feudal hierarchy approaches discussed in this paper are based on

the concept of Feudal RL described above.

Kulkarni et al [50] proposed a Deep HRL approach consisting of a two level hierarchy of Deep Q

Networks (DQNs) [41] which represent the manager and the worker. The manager network selects

a subgoal from a set of predefined subgoals. It is learned using the task reward. The worker network

takes the subgoal as input and selects primitive actions to achieve the subgoal. It is learned using

rewards for reaching the subgoal. A subgoal is either an original state or an abstract representation

of a state, for e.g. an object extracted from a image where the image represents the original state.

One of the tasks used for evaluation is Atari Montezuma’s Revenge in which standard DQN makes

almost no progress in terms of collected rewards over 2 million time steps. On the other hand, Deep

HRL with predefined subgoals progressively gets higher rewards as training proceeds.

Learning multiple levels of policies simultaneously results in the issue of non-stationarity
[76, 91]. This means that the state-action-next state transition data, which is generated by executing

a lower-level policy and is observed by a higher-level policy, varies over different time instances

even for the same subgoal chosen in the same state of the environment. This is because the the

lower-level policy is not stationary and its response to a (state, subgoal) pair changes during the
learning process. Non-stationarity may result in many useless data samples and it needs to be

addressed for data-efficient learning.

To address the issue of non-stationarity, Nachum et al [76] proposed a two-level feudal hierarchy

with a mechanism for subgoal re-labelling. This approach is called Hierarchical Reinforcement

3
defined in subsection 2.3.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Hierarchical Reinforcement Learning: A Comprehensive Survey 11

Table 1. Approaches for Learning Hierarchical Policy (LHP).

Approach Definition of a subtask 𝜔 State ab-

straction

Reward

abstrac-

tion

Suitable task

domains

Main utilities Main limitations

𝐼𝜔 𝜋𝜔 𝛽𝜔 𝑔𝜔 𝑟𝜔 state

space

action

space

Feudal Hierarchy Approaches

Feudal RL; Dayan &

Hinton [5]

global learned

using 𝑟𝜔

fixed time

steps or at

𝑔𝜔

PRE w.r.t. 𝑔𝜔 Possible Yes D, S D learns hierarchical

policy using subgoals

hierarchical policy

is likely to be sub-

optimal // does not

address the issue of

non-stationarity

Deep HRL; Kulkarni
et al [50]

global learned

using 𝑟𝜔

fixed time

steps or at

𝑔𝜔

PRE w.r.t. 𝑔𝜔 Possible Yes D/C, S/L D learns hierarchical

policy using subgoals

in the tasks with

large and high-

dimensional state

spaces

hierarchical policy

is likely to be sub-

optimal // does not

address the issue of

non-stationarity

HIRO; Nachum et al

[76] // HAC; Levy et

al [91]

global learned

using 𝑟𝜔

fixed time

steps or at

𝑔𝜔

PRE, using

selective

features of

the state

space

w.r.t. 𝑔𝜔 Possible Yes C, L/S C reduce non-

stationarity while

learning a feudal

hierarchy

manually mapping

the state space to

the subgoal space

may be challenging

if the state space is

high-dimensional

HAL Jiang et al [89] global learned

using 𝑟𝜔

fixed time

steps or at

𝑔𝜔

PRE, using

natural

language

instructions

w.r.t. 𝑔𝜔 Possible Yes D/C, S/L C interpretability of hi-

erarchical policy us-

ing natural language

requires predefined

mapping of language

instructions to the

task domain

Policy Tree Approaches

Options; Sutton et al

[11]

PRE PRE, further

tuned using

task rewards

PRE n.r. optional No No D, S D learns optimal hierar-

chical policies

all the Options are

blended into the

same MDP, so Op-

tions are not easily

transferable

MAXQ; Dietterich

[12]

global learned

using 𝑟𝜔

PRE n.r. PRE Possible Yes D, S D policies of the sub-

tasks are transferable

across different

tasks/hierarchies

hierarchical pol-

icy is likely to be

sub-optimal

HAMs; Parr & Russell

[10]

PRE learned

using task

rewards

PRE n.r. optional No No D, S D prior knowledge

about higher-level

transition dynamics

can be added by

using Finite State

Machines (FSMs)

[69]

complicated to imple-

ment due to the intri-

cate programming of

FSMs

w.r.t. = with respect to; n.r. = not required.
PRE = predefined, D = discrete, C = continuous, S = small, L = large.
All the task domains are assumed to have moderate to extreme reward sparsity.

Learning with Off-policy Correction (HIRO). Subgoal re-labelling in HIRO can be described as

follows: a two-level HRL agent interacts with its environment and gathers experience data. This

data consists of transition tuples (𝑠𝑡 , 𝑔𝑡 ,
∑
𝑟𝑡 :𝑡+𝑐 , 𝑠𝑡+𝑐) for the higher-level policy where 𝑟 is the task

reward, and (𝑠𝑡+𝑖 , 𝑔𝑡 , 𝑎𝑡+𝑖 , 𝑟𝑔𝑡𝑡+𝑖 , 𝑠𝑡+𝑖+1),∀ 0 < 𝑖 < 𝑐 , for the lower-level policy. Here, 𝑐 is a fixed time

horizon for achieving each subgoal and 𝑟𝑔𝑡 is the reward for achieving 𝑔𝑡 . This data is subsequently

used for training the HRL agent’s hierarchical policy. However, if the agent does not achieve 𝑔𝑡
after 𝑐 time steps, then the subgoal is re-labelled in the transition data with another subgoal 𝑔′𝑡
drawn from a distribution of subgoals which maximize the probability of the observed transitions.

Then, the higher-level policy treats 𝑔′𝑡 as its output in the hindsight, which correlates better with

the observed transitions. In this way, HIRO reduces the effective non-stationarity. A subgoal in

HIRO is defined by choosing selective features from a state in the original state space. HIRO is

evaluated on MuJoCo [37] continuous control tasks and shown to perform better than standard RL

and few other HRL approaches [67, 57].

, Vol. 1, No. 1, Article . Publication date: August 2023.

12 Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek

Concurrently with HIRO, Levy et al [91] proposed an approach called the Hierarchical Actor-

Critic (HAC) which also addresses the non-stationarity issue by subgoal re-labelling. In this scheme,

the output subgoal in the higher-level data and the input subgoal in the lower-level data are replaced

with the actual state achieved by the agent in hindsight rather than a probability based sampling of

a new subgoal as in HIRO. This simple scheme also makes it possible to extend the hierarchy to

more than two levels. HAC is evaluated on MuJoCo [37] continuous control tasks and shown to

perform better than standard RL and HIRO. Moreover, the authors find that a three-level hierarchy

performs better than a two-level hierarchy on those tasks.

A feudal hierarchy can also be realized by using natural language instructions instead of subgoal

states. Jiang et al [89] proposed an approach called Hierarchical Abstraction with Language
or HAL. They assume that a mapping from a state 𝑠 ∈ 𝑆 to a language instruction

4 𝑙 ∈ 𝐿 is given by

a human supervisor or generated using a predefined program, as a probability distribution over

the instructions in the instruction space 𝐿. On this basis, a Boolean function Ψ : 𝑆 × 𝐿 → (0, 1) is
defined. Now, if a higher-level policy selects an instruction 𝑙 , then all the states for which Ψ(𝑠, 𝑙) = 1

are the subgoal states for that instruction. In terms of the notation used in this paper, a language

instruction 𝑙 is a subtask 𝜔 and all the states which satisfy Ψ(𝑠, 𝑙) = 1 belong to the subgoal set of 𝜔 ,

i.e. 𝑔𝜔 . The language instruction is encoded using a recurrent neural network [38] whose output is

given to the lower-level policy as input. The subtask reward 𝑟𝜔 used to train the lower-level policy

is a binary reward for achieving the states which satisfy the given instruction. HAL also handles

non-stationarity using a mechanism called Hindsight Instruction Re-labelling. HAL is evaluated

on object arrangement tasks in MuJoCo continuous control domain [37] integrated with CLEVR

language dataset [49] and found to outperform standard RL and few other HRL approaches [56, 76].

3.1.2 Policy Tree Approaches. Sutton et al [11] introduced the Options framework in which the

default MDP
5
(called core MDP) is extended by including a set of subtasks, called Options, into

the action space of an agent. A primitive action itself is considered as a single-step Option. An

Option 𝜔 is defined using a tuple: (< 𝐼𝜔 , 𝜋𝜔 , 𝛽𝜔 >). 𝐼𝜔 ⊂ 𝑆 is a set of states in which the Option

𝜔 can be initiated or is valid. 𝛽𝜔 : 𝑆 → [0, 1] gives the probability of termination of 𝜔 in a state

𝑠 ∈ 𝑆 . 𝜋𝜔 : 𝑆 ×𝐴 → [0, 1] is the policy of the Option. An Option may or may not have an associated

reward function 𝑟𝜔 . It is usually assumed that the Options are predefined by a programmer. The

policy of an Option (𝜋𝜔) is predefined as an initial policy which can be fine-tuned in the context of

a particular task using a mechanism called intra-option learning. Intra-option learning uses the

task rewards even if the Option-specific reward 𝑟𝜔 is given. Moreover, the Q-value function of

any Option 𝜔 , i.e. 𝑄𝜔 (𝑠, 𝑎), represents the expected cumulative reward until the end of the main

task rather than only until the horizon (or termination) of the Option itself. Hence, an Option

is not a standalone subtask unit but it blends into the core MDP. This limits the transfer-ability

of the learned Options to other tasks but theoretically guarantees the optimality of the learned

hierarchical policy. Sutton et al [11] evaluated the Options framework on grid-world tasks and

found that it converges to optimal performance faster than standard RL.

MAXQ value function decomposition, proposed by Dietterich [12], decomposes the core MDP

into smaller sub-MDP components. Each sub-MDP is associated to a subtask whose policy can be

learned separately from other subtasks. This is achieved by decomposing the main Q-value function

into the separate Q-value functions of the subtasks. Due to such decomposition, the Q-value of

any subtask 𝜔 , i.e. 𝑄𝜔 (𝑠, 𝑎), represents the expected cumulative reward only until the horizon (or

termination) of that subtask. Thus, each subtask policy can be learned as a standalone unit. This

4
We use different notations compared to the original HAL paper [89] to avoid conflicts with the subtask notations (subsection

2.2.1).

5
Markov Decision Process defined in subsection 2.1.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Hierarchical Reinforcement Learning: A Comprehensive Survey 13

is in contrast against Options [11] in which a subtask is blended into the core MDP. The benefit

of value decomposition is that the policies of the subtasks learned using MAXQ on one task can

be easily transferred to different tasks or different MAXQ agents. The disadvantage of treating

subtasks as standalone units is that the optimality of the hierarchical policy is compromised. MAXQ

hierarchies are only recursively optimal, which means that MAXQ can learn optimal policies of

the subtasks but the overall hierarchical policy is generally not optimal. In MAXQ, the predefined

components of a subtask 𝜔 are its termination condition 𝛽𝜔 (e.g. events, conditions, subgoal states

etc.) and reward function 𝑟𝜔 . A subtask may choose primitive actions in addition to choosing

other subtasks. MAXQ is evaluated in a grid-world Taxi domain where it outperforms standard

Q-learning.

Hierarchy of Abstract Machines (HAMs), by Parr and Russell [10], uses stochastic Finite State

Machines (FSMs) [69] to represent the subtasks. HAMs is defined by a collection of stochastic FSMs

{H}. Each FSM H𝑖 ∈ {H} is defined using various machine-states. A machine-state is different

from the state of the environment. An FSM consists of four types of machine-states: action, call,
choice, and stop. There may be multiple machine-states of the same type. For e.g., Parr and Russell

[10] illustrate an FSM with two call machine-states - ’Follow Wall’ and ’Back Off’ - which can be

chosen from the choice machine-state of that FSM. The choice machine-state non-deterministically

selects the next machine-state of H𝑖 . The possible choices consist of the various action, call, or
stop machine-states of H𝑖 . A Q-table captures the values of the (state, choice) pairs. The choices
are made using a greedy policy. Thus, reinforcement learning (specifically, Q-learning) is used to

learn the optimal choice to be made in the choice state, given the current state of the environment.

If an action machine-state is chosen, it executes a primitive action in the environment. If a call
machine-state is chosen, it suspends the execution of H𝑖 and initiates the execution of another FSM,

say H𝑗 . This is equivalent to a transition from one subtask to another. If a stop machine-state is

chosen, it terminates the execution of H𝑖 and returns the control to the FSM that called H𝑖 . HAMs

is a useful and elaborate framework for programming the prior knowledge about the transition

dynamics in a domain. However, due to its intricate structure, HAMs has not found widespread

application in HRL.

3.2 Learning Hierarchical Policy in Unification with Subtask Discovery (UNI)
This subsection reviews the approaches which unify subtask discovery with the learning of the

hierarchical policy, for single agent and single task setting. For an HRL agent to be deployable

on a particular task without requiring predefined or handcrafted subtasks, it is essential that the

subtask space (Ωℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦) is discovered simultaneously when the hierarchical policy of the agent

is being learned. This requires a unified or end-to-end learning approach which uses the same

data for both subtask discovery and learning hierarchical policy, where the data is collected while

performing the given task. A few important issues involved with such a unification are as follows:

discovering the subtask space which maintains the optimality of the hierarchical policy, learning

various components of a subtask during discovery (terminations conditions, initiation conditions,

subgoals etc.) from scratch, discovering a dynamic number of subtasks, among other issues.

The UNI approaches discussed henceforth are based on the two types of LHP approaches - the

feudal hierarchy (subsection 3.1.1) and Options (a policy tree approach, subsection 3.1.2). Please

refer to Table 2 for a summary of the approaches.

3.2.1 Unified Learning of Policy Tree. The policy tree approaches discussed in this subsection

discover Options [11] in unification with the learning of a hierarchical policy. As discussed in

subsection 3.1.2, an Option is a subtask which is represented using three key components: initiation

condition 𝐼𝜔 , policy 𝜋𝜔 , and a termination probability function 𝛽𝜔 . Unified Option discovery

, Vol. 1, No. 1, Article . Publication date: August 2023.

14 Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek

Table 2. UNI: Approaches for Unifying Subtask Discovery with the Learning of Hierarchical Policy.

Approach How are subtasks dis-

covered?

Definition of a subtask 𝜔 No. of

sub-

tasks

Suitable task domains Main utilities Main limitations

𝐼𝜔 𝜋𝜔 𝛽𝜔 𝑔𝜔 𝑟𝜔 state space action

space

Unified Learning of Policy Tree

Daniel et al

[45]

by learning a graphi-

cal model to segment

trajectories into Op-

tions

global learned

using

the task

rewards

learned n.r. n.r. PRE D/C, S D/C learns trajectory-

based Options from

scratch

Options are not

available during

initial learning

stage // number of

Options needs to be

predefined

Skill Chain-
ing; Konidaris
et al [30]

by learning a classi-

fier to identify initi-

ation states of one

Option 𝜔 and setting

them as subgoals of

another Option𝜔 ′
, i.e

𝑔𝜔′ = 𝐼𝜔

learned

using the

classifier

learned

using 𝑟𝜔

at 𝑔𝜔 learned

using the

classifier

w.r.t. 𝑔𝜔 DISC D/C, S D learns a flexible

number of subgoal-

seeking Options

from scratch

Options are not

available during

initial learning stage

// works only for

goal-directed tasks

Option-Critic;
Bacon et al

[56]

learned using policy-

gradients derived us-

ing the task rewards

global learned

using

the task

rewards

learned n.r. n.r. PRE D/C, L/S D learns general Op-

tions from scratch,

starting from initial

learning stage

number of Options

needs to be prede-

fined // performs

poorly on sparse

reward tasks [67]

Proximal
Policy Option-
Critic; Klis-

sarov et al

[61]

learned using policy-

gradients derived us-

ing the task rewards

global learned

using

the task

rewards

learned n.r. n.r. PRE D/C, L/S C extends Option-

Critic to continuous

action tasks

number of Options

needs to be prede-

fined // performs

poorly on sparse

reward tasks [76, 97]

Hierarchical
Option-Critic;
Riemer et al

[80]

learned using policy-

gradients derived us-

ing the task rewards

global learned

using

the task

rewards

learned n.r. n.r. PRE D/C, L/S D extends Option-

Critic to arbitrary

number of levels

of the hierarchical

policy

number of Options

needs to be pre-

defined // might

perform poorly on

sparse reward tasks

Interest-
Option-Critic;
Khetarpal and

Precup [90]

learned using policy-

gradients derived us-

ing the task rewards

learned learned

using

the task

rewards

learned n.r. n.r. PRE D/C, L/S D adds Interest Func-

tion to Option-Critic

for learning the initi-

ation condition 𝐼𝜔

number of Options

needs to be pre-

defined // might

perform poorly on

sparse reward tasks

Double Actor-
Critic; Zhang
et al [96]

learned using policy-

gradients derived us-

ing the task rewards

global learned

using

the task

rewards

learned n.r. n.r. PRE D/C, L/S D/C learns general

Options using off-

the-shelf policy opti-

mization algorithms

instead of algorithms

customized for

Option-based SMDP

number of Options

needs to be prede-

fined // might degen-

erate to frequently

terminating Options

due to the lack of de-

liberation cost

Unified Learning of Feudal Hierarchy

FuN ; Vezh-

nevets et al

[67]

by learning the sub-

goal space using pol-

icy gradients

global learned

using 𝑟𝜔

after

fixed no.

of steps

or at 𝑔𝜔

learned w.r.t. 𝑔𝜔 DISC D/C, L/S D learning low-

dimensional subgoal

space

learned representa-

tion of the subgoal

space may not be

optimal

Nachum et al

[77]

by learning the

subgoal space using

a sub-optimality

bound

global learned

using 𝑟𝜔

after

fixed no.

of steps

or at 𝑔𝜔

learned w.r.t. 𝑔𝜔 DISC C, L/S C learning low-

dimensional subgoal

space, with theo-

retical guarantee

of reduced sub-

optimality

not expressive

enough to repre-

sent subgoal-free

behaviour (unlike

Options), e.g. drive

through traffic, move

in a circle, running

etc.

w.r.t. = with respect to; n.r. = not required.
D = discrete, C = continuous, S = small, L = large. PRE = predefined, DISC = discovered.
All the task domains are assumed to have moderate to extreme reward sparsity.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Hierarchical Reinforcement Learning: A Comprehensive Survey 15

mainly involves the learning of 𝜋𝜔 and 𝛽𝜔 associated with each option 𝜔 simultaneously with the

higher-level task policy (𝜋Γ). The initiation 𝐼𝜔 may also be learned or set as global
6
. None of these

components are handcrafted.

Daniel et al [45] propose a graphical model for unified Option discovery. At any time-step 𝑡 ,

the observed variables of this graphical model are the environment state 𝑠𝑡 and the primitive

action 𝑎𝑡 . The hidden variables are the Option 𝜔𝑡 active at that time-step and the termination

label 𝑏𝑡 (binary, 0 or 1) indicating whether the previous Option 𝜔𝑡−1 terminates (𝑏𝑡=1) or not

(𝑏𝑡=0). The model consists of the activation policy 𝜇 (𝜔 |𝑠;𝜃𝑂) which is parameterized using 𝜃𝑂
and provides the probability distribution over all the Options, conditioned on the current state

𝑠𝑡 . Each Option 𝜔 consists of a sub-policy 𝜋 (𝑎 |𝑠;𝜃𝜔
𝐴
) and a termination function 𝛽 (𝑏 |𝑠;𝜃𝜔

𝐵
). The

set of 𝜃𝜔
𝐴
parameters of all the Options is denoted as 𝜃𝐴. Similarly, The set of 𝜃𝜔

𝐵
parameters of

all the Options is denoted as 𝜃𝐵 . Then, the parameters {𝜃𝑂 , 𝜃𝐴, 𝜃𝐵} are learned using Expectation-

Maximization (EM) [3] with weighted estimates in the maximization step. The EM algorithm takes

a set of trajectories as input and learns the parameters which best explain the trajectories. The

trajectories are obtained from the exploration done by the HRL agent. In the maximization step,

each state-action (𝑠, 𝑎) pair is weighted in proportion to the advantage value 𝑄 (𝑠, 𝑎) −𝑉 (𝑠). In this

way, the Option learning process incorporates the expected task reward. Overall, the parameters

{𝜃𝑂 , 𝜃𝐴, 𝜃𝐵} for the activation policy, all the sub-policies, and all the termination functions are

learned in conjunction during EM. Hence, this is a unified HRL approach. This approach is evaluated

on grid-world navigation task with discrete state-action space and pendulum swing task with

continuous state-action space. It is found to perform better than standard RL and few other subtask

discovery approaches [17, 24]. The main limitation of this approach is that the number of Options

need to be predefined and fixed.

Konidaris et al [30] propose an approach called skill chaining to incrementally construct Options

while learning an HRL agent. The process of skill chaining starts with one Option 𝜔 created with

its subgoal set (𝑔𝜔) containing the goal states of the main task. The Option policy 𝜋𝜔 is learned to

reach the subgoals. A classifier is then learned to find the initiation states of 𝜔 . The states from

which the subgoals of 𝜔 can be reached within a predefined number of time steps are classified

as positive. In contrast, those states from which the subgoals cannot be reached within the time

limit are classified as negative. The positive states are added to the initiation set 𝐼𝜔 . Now, another

Option 𝜔 ′
is created, whose subgoal set 𝑔𝜔′ is equal to 𝐼𝜔 . Then, the above-mentioned classification

and policy learning processes repeat for 𝜔 ′
, and so on, creating a chain of Options (or skills).

Skill chaining discovers a flexible number of Options. The authors evaluate it on a Pinball control

domain in which it outperforms standard RL. Recently, Bagaria et al [97] extended skill chaining

for continuous control using deep reinforcement learning. Key limitations of skill chaining are that

it works only on the tasks which have explicit goal states and requires strong initial exploration

without Options to reach the goal states.

In all the approaches discussed above, an agent is not able to use the subtasks (Options) during

the initial episodes of learning. This is because the agent must first collect experience trajectories to

use for discovering the initial set of Options. Bacon et al [56] propose an Option framework which

can learn the Options along with the entire hierarchical policy from the beginning of the learning

process. This approach is called Option Critic (OC). In OC, a fixed number of Options are randomly

initialized with parameterized policies and termination functions. The higher-level policy is also

randomly initialized. Then, the higher-level policy and all the Options (policies and termination

functions) are learned using policy gradients derived using the main task rewards. OC does not use

subgoals or Option-specific rewards and it is theoretically guaranteed to learn optimal hierarchical

6
Defined in subsection 2.3.

, Vol. 1, No. 1, Article . Publication date: August 2023.

16 Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek

policy using the policy gradients. In evaluation, OC outperforms standard RL in Atari games like

Seaquest, Ms Pacman etc using deep learning. It also performs better than skill chaining [30] in the

initial stages of learning in the Pinball domain. A limitation of OC is that it requires the number of
Options to be predefined. Moreover, the policy gradients are heavily dependent on the main task

reward. Thus, OC is likely to perform poorly on the sparse-reward tasks [67, 76]. OC has become a

popular framework for unified HRL due to its strong theoretical foundation. This has lead to the

emergence of various approaches that build upon OC [61, 80, 90], which are listed in Table 2.

The Option-Critic (OC) framework requires the policy optimization algorithms which are cus-

tomized for the Option-based Semi-Markov Decision Process (SMDP) [11]. This puts a restriction

on using other advanced policy optimization algorithms [43, 72] for HRL in an off-the-shelf manner.

To address this issue, Zhang et al. [96] proposed the formulation of an HRL hierarchy as two parallel

augmented Markov Decision Processes (MDPs) [35], where each MDP uses an augmented state

space that is a cross-product of the original state space and the set of Options. The higher-level

MDP models the problem of learning a policy over Options and their corresponding termination

conditions, while the lower-level MDP models the problem of learning the Option policies. Both

MDPs use the task rewards only, without subgoals or subtask rewards. The proposed approach is

called Double Actor Critic (DAC) because it applies actor-critic algorithms to learn the policies

at both the levels. Due to the augmented MDP formulation, DAC is compatible with various off-

the-shelf actor-critic algorithms for policy optimization. It shows significantly better performance

than OC on various robot simulation tasks. However, similar to OC, DAC requires the number of

Options to be pre-defined.

It has been observed that OC and DAC approaches might encounter a higher-level policy

degeneration phenomenon [74, 96] when the probability of termination of each Option becomes

very high after a long period of training. This causes the higher-level policy to switch from one

Option to another at almost every time step and the learned Options do not specialize on any

recognizable behaviour. Harb et al. [74] argue that temporally extended Options are not necessary

from the theoretical perspective of policy optimization, because the optimal policy is actually

achieved in terms of the primitive actions. To learn temporally extended Options, they introduced

a regularizer called deliberation cost, which is a penalty received by the higher-level policy upon

switching Options. This encourages the higher-level policy to retain each Option for a longer period

of time, which leads to an empirically better performance than the frequently switching Options.

The deliberation cost is included in the OC framework but the authors of DAC leave the integration

of such a cost for future work. Another form of degeneration might occur when the higher-level

policy selects a single Option for the entire task duration. This is possibly because each Option

can be initiated anywhere in the state space if it uses a global initiation condition 𝐼𝜔 . Khetarpal

and Precup [90] proposed an approach called Interest-Option-Critic (IOC), built on top of the OC

framework, which learns the initiation condition of each Option using the policy gradients so that

various Options can specialize on different behaviours, thereby preventing the degeneration.

3.2.2 Unified Learning of Feudal Hierarchy. In a feudal UNI hierarchy, the subgoal space and the

universal policies at all the levels are learned in a unified manner.

Vezhnevets et al [67] propose a feudal hierarchy of neural networks in which a higher level

network called the "Manager" samples a subgoal in a learned latent subgoal space. The subgoal

may be a point in the latent space or it may be a unit vector representing a direction in the latent

space. The subgoal is taken as input by a lower-level network called the "Worker" which must

learn a policy to achieve the subgoal using the distance to the subgoal as a reward. The Worker is

trained using the usual policy gradients derived from the subgoal-based rewards. The Manager is

trained using a transition gradient introduced by the authors. This gradient is derived using the

, Vol. 1, No. 1, Article . Publication date: August 2023.

Hierarchical Reinforcement Learning: A Comprehensive Survey 17

task reward as well as the distance between the subgoal assigned to the Worker and the actual

state-transition made by the Worker. Thus, the Manager learns from both the task rewards and

the Worker’s behaviour. The transition gradient is used to learn both the Manager policy and the

latent subgoal space. This approach, called Feudal Networks (FuN), shows better performance on

Atari games, such as Montezuma’s Revenge, than DQN [41] and Option-Critic [56].

Feudal Networks do not guarantee that the learned subgoal space leads to optimal hierarchical

policy. Nachum et al [77] address this issue in a subgoal representation learning approach developed

uponHIRO [76] (HIRO is discussed in subsection 3.1.1). The authors derive an optimization objective

based on a theoretical bound on the sub-optimality of the hierarchical policy. This objective is

used to learn a function 𝑓𝜃 (𝑠) which transforms the state space to a low-dimensional subgoal space.

Thus, the learned subgoal space representation minimizes the sub-optimality and the hierarchical

policy based on HIRO addresses the non-stationarity issue. This approach is evaluated on MuJoCo

continuous control tasks [37], using both low-dimensional state spaces and high-dimensional state

spaces (e.g. images used as states). It outperforms various other subgoal representation schemes

such as direct use of the original states (e.g. images) as subgoals, using latent space learned in the

style of FuN [67], using subgoal embedding derived from Variational Autoencoder [39] etc.

3.3 Independent Subtask Discovery (ISD)
This subsection reviews the approaches for independent subtask discovery, for single agent and

single task setting. The ISD challenge arises when the aim is to automatically find the subtasks which

are task-agnostic and transferable to HRL agents across various unknown tasks. The implication

is that the process of subtask discovery should be independent of the process of learning the

hierarchical policy of an agent. The common idea behind the ISD approaches is similar to that of

pre-training in the general context of machine learning [33]. In an ISD approach, subtask discovery

typically occurs in a pre-training stage. The discovered subtasks are then used to learn a hierarchical

policy to perform a particular target task. This pre-training approach leads to a few key issues

which are part of ISD, as follows: ensuring that the subtask discovery process is data-efficient,

discovering subtasks which allow diverse exploration of the state space independent of any specific

task, learning continuous subtask space which allows generalization through sampling of new

subtasks on target tasks, among other issues.

It is important to make a disclaimer that we do not strongly classify a particular approach as ISD

without any possibility of being applicable for subtask discovery in a unified manner. A subtask

discovery algorithm provided as part of an ISD approach may also be used for unified learning by

running it simultaneously with the training of the agent’s hierarchical policy, using the same task

as the source of data for both. This is mentioned wherever applicable in the following discussion.

Please refer to Table 3 for a summary of the ISD approaches.

3.3.1 Discovery of Subgoals. A set of subtasks can be constructed by discovering their correspond-

ing subgoals (one of the objective components mentioned in subsection 2.2.1) and then learning

one subtask policy to reach one subgoal or a set of related subgoals.

A straightforward approach for subgoal discovery is to find the bottlenecks in the state space of a

task domain. Bottlenecks are those states at which several paths connecting various initial states

to various goal states converge. Removing the bottlenecks is likely to cut access to the possible

goal states in the state space. Hence, the discovered bottlenecks are treated as important subgoals

and policies of subtasks are learned to reach them.

McGovern and Barto [15] proposed a frequency-based approach for bottleneck discovery. This

approach uses the idea of Diverse Density [9] to find interesting bottlenecks. An agent explores

the state space using an initial policy and collects the trajectories from various initial states to

, Vol. 1, No. 1, Article . Publication date: August 2023.

18 Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek

Table 3. ISD: Approaches for Independent Subtask Discovery.

Approach How is a subtask discovered?

Suitable task

domains

Main utilities Main limitations

state

space

action

space

Discovery of Subgoals

McGovern et al [15]

// Şimşek et al [29]

using frequently occurring bottlenecks* as

subgoals

D, S D simple to implement

frequency-based heuristic

might require excessive ex-

ploration to collect multi-

ple trajectories for estimat-

ing the bottleneck frequen-

cies

Q-cut; Menache et al

[17]

using graph-cut bottlenecks as subgoals D, S D data-efficient bottleneck dis-

covery using graphs over the

global state-action space

not easily scalable to contin-

uous or large state spaces

L-cut; Şimşek et al

[24]

using graph-cut bottlenecks as subgoals D, L/S D data-efficient bottleneck

discovery using local

sub-graphs

not easily scalable to contin-

uous state spaces

Macahdo et al [63] using subgoals at local maxima of Proto

Value Functions (PVFs) [27]

D/C,

L/S

D learning general subtasks for

diverse exploration

computing PVFs may be

computationally expensive

HASSLE; Bakker et al
[22]

using state space cluster centroids as sub-

goals

D, S D learning general subtasks for

diverse exploration

not easily scalable to high-

dimensional state spaces

HSP ; Sukhbaatar et al
[82]

using a continuous latent embedding of

subgoals learned via asymmetric self-play

[65]

D/C,

S/L

C discovering continuous sub-

goal embedding instead of

discrete subgoal space

cannot generalize to subgoal-

free skills e.g. drive through

traffic, move in a circle, run-

ning etc.

Discovery of Diverse Skills**

VALOR; Achiam et al

[68]

by learning the policy 𝜋𝜔 to maximize the

MI*** between the skill 𝜔 and the trajecto-

ries generated by executing it

D/C,

S/L

D/C discovers diverse skills and

provides a procedure to

grow the number of skills

requires excessive explo-

ration data to maximize

MI

Hausman et al [75] by learning the policy 𝜋𝜔 to minimize the

cross-entropy between the skill embedding

and the generated trajectories

D/C,

S/L

C discovers continuous embed-

ding of skills instead of a dis-

crete set

requires excessive explo-

ration to learn both the skill

embedding and the policy

SecTAR; Co-Reyes et
al [79]

by learning the policy 𝜋𝜔 to decode the

latent embedding of the trajectories corre-

lated with the skill 𝜔

D/C,

S/L

D discovers continuous embed-

ding of skills and addition-

ally provides a technique for

unified learning

requires excessive explo-

ration to collect diverse

trajectories for embedding

*defined in subsection 3.3.1; **definition of ’skill’ is given in subsection 2.3; ***Mutual Information
w.r.t. = with respect to; n.r. = not required.
D = discrete, C = continuous, S = small, L = large. PRE = predefined.

various terminal states. Each trajectory is classified as positive or negative depending on whether

its terminal state is a desired goal state or not. Here, a desired goal state is related to a pre-training

task. Then, a Diverse Density (DD) measure is used to estimate the probability of a state occurring

on the positive trajectories vs the probability of occurrence on the negative trajectories. The states

with higher DD are chosen as the bottleneck subgoals. Simsek and Barto [29] also proposed a

frequency-based bottleneck discovery approach which may be more data efficient because they

build partial state-action transition graph from both the successful and unsuccessful experiences.

In this graph, each node is a state and each edge is an action. The graph can be used to simulate
new trajectories by simply following the connections between various nodes. The authors use a

measure called betweenness defined as

∑
𝑠≠𝑡≠𝑣

𝜎𝑠𝑡 (𝑣)
𝜎𝑠𝑡

𝑤𝑠𝑡 , where 𝜎𝑠𝑡 is the total number of optimal

paths from a node 𝑠 to a node 𝑡 and 𝜎𝑠𝑡 (𝑣) is the number of such paths passing through a node 𝑣 .

, Vol. 1, No. 1, Article . Publication date: August 2023.

Hierarchical Reinforcement Learning: A Comprehensive Survey 19

𝑤𝑠𝑡 is the weight of a (𝑠, 𝑡) pair. If the betweenness score for 𝑣 is higher than its neighbours by a

certain threshold, then 𝑣 is chosen as a subgoal.

Frequency statistics require a large number of trajectories to be generated in order to estimate

the occurrence frequencies of various states. A more efficient approach is to simply construct a

state-action transition graph once, in which each node is a state and each edge is an action, and

then find the bottlenecks by analyzing the connectivity between different sub-graphs. Menache et

al [17] proposed an approach called Q-cut which builds a state-action transition graph over the

global environment and then finds bottleneck nodes using Max-Flow/Min-Cut algorithm [21]. Each

bottleneck is treated as a subgoal for a subtask, and the subtask’s policy is learned to reach it. Q-cut

is not be easily scalable to large and/or continuous state spaces due to the need for constructing

the global graph which requires diverse exploration. Şimşek and Barto [24] proposed a similar

graph-cut approach to find the bottlenecks, but they use local sub-graphs rather than a global

graph constructed over the entire state space. This is called L-cut. L-cut can find local bottlenecks

incrementally and can be applied on large state spaces because an agent does not need to build the

global graph. However, it can not be easily scaled to continuous state spaces because the graphs

used by the algorithm require discrete states as nodes.

Bottleneck discovery may not be suitable for task domains which do not necessarily contain

identifiable bottlenecks. This may happen when the paths to various desired goal states are diversely

distributed and do not sufficiently converge on particular bottlenecks. Machado et al [63] proposed

an approach to find subgoals which are distributed over diverse regions of the state space rather

than only at the bottlenecks. This approach uses Proto Value Functions (PVFs)
7
[27]. The subgoals

lie at the local maxima of different PVFs defined over the state space. The PVFs are derived from the

eigendecomposition of the Laplacian matrix
8
of the state transition graph. Bakker & Schmidhuber

[22] proposed unsupervised clustering directly in the state space in order to discover subgoals

over diverse regions. An agent explores the state space and forms clusters of states using an online

Adaptive Resource Allocation Vector Quantization (ARAVQ) algorithm [13]. The centers of various

clusters are used as subgoals. The exploration and clustering process is not dependent on any

particular task, hence the subgoal discovery is task-agnostic or independent. The authors also

provide an algorithm to learn a hierarchical policy using the already discovered subgoals. In this

algorithm, subgoals constitute the action space of a higher-level policy which is learned using

the task rewards. The lower-level consists of multiple policies where each policy can specialize

to reach of a subset of the subgoal space and learn using the rewards for subgoal achievement.

A mapping function is learned to assign a subgoal to the appropriate lower-level policy. There is

also a provision for subgoal re-labelling, similar to HIRO [76] or HAC [91] (subsection 3.1.1), for

handling non-stationarity. The complete approach is called Hierarchical Assignment of Subgoals to

Sub-policies LEarning (HASSLE).

A significant limitation of all the subgoal discovery approaches reviewed so far is that the

discovered subgoal space is discrete. In such a discrete space, it is not feasible to interpolate new

subgoals, thereby limiting the range (or diversity) of the tasks which can be performed using the

discovered subgoal space. Discovery of continuous subgoal spaces is important to address this

issue. Sukhbaatar et al [82] proposed an approach called Hierarchical Self Play (HSP) to learn

continuous embedding of subgoals using asymmetric self-play [65]. Asymmetric self-play is an

unsupervised pre-training phase which is illustrated as follows: at the beginning of asymmetric

self-play, two standard (non-hierarchical) RL policies are initialized, say Alice (𝜋𝐴) and Bob (𝜋𝐵).

Let the initial state be 𝑠0. First, Alice takes𝑇𝐴 steps in the environment starting from 𝑠0. Let 𝑠
∗ = 𝑠𝐴

𝑇𝐴

7
PVFs are the basis functions of the state transition graph of an MDP.

8
https://mathworld.wolfram.com/LaplacianMatrix.html

, Vol. 1, No. 1, Article . Publication date: August 2023.

https://mathworld.wolfram.com/LaplacianMatrix.html

20 Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek

be the final state reached using Alice. Next, the environment is reset to 𝑠0 and 𝑠∗ is given as a

target to Bob. At each time step, 𝑠∗ is encoded into a low-dimensional latent subgoal embedding

using a learned encoder 𝐸, i.e. 𝑔𝑡 = 𝐸 (𝑠𝐵𝑡 , 𝑠∗) where 𝑠𝐵𝑡 is the state at time 𝑡 while Bob is executing.

The Bob policy selects primitive actions as 𝑎𝐵𝑡 = 𝜋𝐵 (𝑠𝐵𝑡 , 𝑔𝑡). Bob is given 𝑇𝐵 steps to achieve the

target state 𝑠∗, otherwise it fails. It is given a reward 𝑅𝐵 = 1 if the target is achieved, otherwise 0.

Alice is given a reward 𝑅𝐴 = 1 − 𝑅𝐵 . The authors choose 𝑇𝐵 ∼ 𝑇𝐴. This results is an asymmetric

self-play mechanism in which Bob learns to reach targets set by Alice and Alice learns to achieve

new, unexplored targets which are beyond the reach of Bob. In this way, an agent consisting of

these two policies explores the environment effectively without external supervision.

The subgoal encoder of HSP, 𝐸 (𝑠𝐵𝑡 , 𝑠∗), basically encodes various target states (𝑠∗) into a low-

dimensional subgoal space. Once a subgoal space has been discovered in the pre-training phase of

asymmetric self-play, it is simply used as the continuous action space of a higher-level policy of an

HRL agent used to perform a particular task. The lower-level of the agent is initialized using the

Bob policy and then fine-tuned on the task.

3.3.2 Discovery of Diverse Skills. The subgoal discovery approaches are unsuited to find subtasks

without definite subgoals associated with them. Consider an example of a subtask ’drive through

traffic’ which is a part of a longer horizon task of reaching a destination. This subtask requires

an agent to manoeuvre a vehicle around traffic without any particular subgoal. Subgoal discovery

is inapt for finding such a subtask. Therefore, general approaches are desired which can directly

discover a set of diverse skills, instead of learning them through subgoals. As defined in subsection

2.3, a ’skill’ refers to the policy of a subtask in the sense that it semantically represents the ability
to do something well. After discovery, the skills can be added to an HRL agent as the lower-level

policies and fine-tuned on a particular task.

One strategy for discovering diverse skills is by maximizing the Mutual Information (MI)
9

between a skill 𝜔 and the states reached or the trajectories generated by using that skill. This is

achieved by using a latent skill vector, say 𝑧𝜔 , and defining the skill policy as 𝜋𝜔 (𝑠) = 𝜋 (𝑠, 𝑧𝜔),
where 𝜋 (𝑠, 𝑧𝜔) is a universal policy which takes the skill vector as input. 𝑧𝜔 is typically a one-hot

encoded vector in most of such approaches [57, 47, 68, 71]. Maximizing the MI between 𝑧𝜔 and the

states reached or trajectories generated by following 𝜋 (𝑠, 𝑧𝜔) results in the discovery of a set of

diverse skills correlated with diverse terminal states or trajectories. An overview of the specific

approaches based on this strategy is provided below.

Florensa et al [57] proposed an approach called SSN4HRL in which the universal policy 𝜋 (𝑠, 𝑧𝜔)
is represented using a stochastic neural network [23]. This policy is learned by maximizing an

MI reward 𝑃 (𝑧𝜔 | (𝑥,𝑦)), where (𝑥,𝑦) is the location of the agent in a spatial environment and

𝑃 (𝑧𝜔 | (𝑥,𝑦)) is the probability of predicting 𝑧𝜔 by observing (𝑥,𝑦). This probability can only be

maximized if the locations reached by executing different skills are sufficiently different. Gregor

et al [47] proposed Variational Intrinsic Control (VIC) which discovers the skills by maximizing

an objective containing an MI term 𝑃 (𝑧𝜔 |𝑠0, 𝑠𝑇) between the skill vector 𝑧𝜔 and the terminal state

𝑠𝑇 reached by the policy 𝜋 (𝑠, 𝑧𝜔), conditioned on the start state 𝑠0. Eysenbach et al [71] proposed

an approach called Diverity is All You Need (DIAYN) which discovers the skills by optimizing

an objective function designed to maximize the MI between a skill vector 𝑧𝜔 and every state in a

trajectory generated by 𝜋 (𝑠, 𝑧𝜔), without considering the order of the states in the trajectory.

All these approaches can discover a set of diverse skills but also share few common limitations,

such as, they can only discover a predefined number of skills and their MI objectives either ignore

trajectories or do not consider the order of states in the trajectories. To address these limitations,

9
Mutual information (MI) of two random variables is the amount of information (in units such as bits) obtained about one

variable by observing the other variable (https://people.cs.umass.edu/~elm/Teaching/Docs/mutInf.pdf).

, Vol. 1, No. 1, Article . Publication date: August 2023.

https://people.cs.umass.edu/~elm/Teaching/Docs/mutInf.pdf

Hierarchical Reinforcement Learning: A Comprehensive Survey 21

Achiam et al [68] proposed Variational Autoencoding Learning of Options by Reinforcement

(VALOR). In this approach, a policy 𝜋 (𝑠, 𝑧𝜔) is basically an encoder which encodes 𝑧𝜔 into a

trajectory. The trajectory is denoted as 𝜏 . It is fed into a decoder which must map it back to 𝑧𝜔 . This

leads to an optimization objective aimed at maximizing 𝑃 (𝑧𝜔 |𝜏). Thus, VALOR discovers a set of

diverse skills which essentially correlate to a diversity of trajectories taken by an agent. VALOR

also provides a procedure to discover a progressively increasing number of skills.

The ISD approaches discussed so far can only discover a discrete set of skills. A possible reasonmay

be that computing the probability distributions over a continuous space of skills, for estimating the

MI, is complicated. However, discovering a continuous space of skills is important for generalization,

such that new skills can be easily interpolated in such a continuous space. Co-Reyes et al [79]

proposed an approach called Self Consistent Trajectory Autoencoder (SeCTAR), in which an

encoder LSTM [6] embeds the state transition trajectories (i.e. {𝑠𝑡 , 𝑠𝑡+1, 𝑠𝑡+2...}) into a low-dimensional

continuous latent vector space and a decoder LSTM learns to decode a latent vector into a policy. A

latent vector represents similar trajectories, hence, the policy decoded from the latent vector is

considered to represent a skill. A diverse latent space is learned by using an exploration mechanism

which generates diverse trajectories. This enoder-decoder model is learned in a pre-training phase

for skill discovery. After the pre-training phase, the encoder module is removed and the encoded

latent space is available as a continuous space of skills. A higher-level policy of an HRL agent

samples a skill in this continuous space, which is then decoded by the decoder module in the form

of a policy. In addition to independent skill discovery, the authors also extend SeCTAR for unified
learning on a particular task. This is achieved via an explorer policy which explores the task relevant

states and their neighbourhood such that the trajectories encoded by the SeCTAR encoder module

are correlated to the given task. This way, the discovered space of skills is situated in the task on

which the HRL agent is being trained concurrently.

Hausman et al [75] proposed a variational inference approach to learn diverse skills along with a

continuous latent embedding of the skills. The objective used for learning is the minimization of

the cross-entropy
10
between a distribution over the latent embedding conditioned on a one-hot

skill vector and a distribution over the latent embedding conditioned on the trajectory generated

by executing that skill. The learned latent embedding is the continuous space of skills in which

new skills can be interpolated.

3.4 Transfer Learning with HRL (TransferHRL)
This subsection reviews the approaches for learning single HRL agent on multiple tasks via multi-

task or transfer learning. The TransferHRL class represents all such approaches with or without

subtask discovery. The concept of transfer learning with HRL arises from the idea that certain

subtasks are shareable across multiple related tasks. The policy learned to perform a subtask in the

context of one task can be used to accelerate the adaptation of the agent on other related tasks as

well. Therefore, this is an important challenge to address in HRL.

Transfer learning is used in the context of RL by transferring experience data, action policy, or

Q-value function from one task to another task, in order to accelerate learning on the latter task

[54, 36]. In the context of HRL, the problem of transferring the main task policy (the highest level in

the hierarchical policy) can be addressed using the RL transfer approaches. However, the subtasks

become the additional transferable components, including their policies, termination/initiation

conditions, subgoals etc. This poses additional issues which are unique to the transfer learning

with HRL (TransferHRL) compared to the transfer learning with standard RL. A few of the issues

unique to TransferHRL are as follows:

10
Cross-entropy is a measure of the difference between two probability distributions for a given random variable.

, Vol. 1, No. 1, Article . Publication date: August 2023.

22 Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek

• Efficiently scaling to a large number of subtasks during lifelong transfer learning.

• Transferring subtasks across task domains with different state spaces.

• Learning subtasks from scratch on multiple related tasks.

These issues are discussed henceforth in this subsection, along with the respective approaches

to address them. We reiterate that the ISD approaches (subsection 3.3) learn task-agnostic subtasks

which can be transferred to various tasks. However, ISD approaches do not address the above-

mentioned issues.

3.4.1 Transfer + Subtask Policy Distillation. An HRL agent might learn and accumulate a large

number of subtask policies when transferring from one task to another, such as during lifelong

learning [70]. Naively adding numerous subtasks to the action space of the higher-level policy

may cause memory-inefficiency due to the need to store multiple subtask policies. Tessler et

al [66] proposed a deep HRL framework, called Hierarchical Deep Reinforcement Learning
Network (H-DRLN), for memory-efficient transfer and retention of a set of pre-trained policies

corresponding to various subtasks (without subtask discovery). These policies are pre-trained

using manually defined objectives. The policies are transferred to an HRL agent (in a target task)

via multi-skill distillation introduced by the authors. Multi-skill distillation is a form of policy

distillation [54] which enables H-DRLN to efficiently combine the policies of several subtasks into

a single distilled policy. This makes H-DRLN memory-efficient. When performing a target task,

H-DRLN agent uses a higher-level policy to choose a subtask which is executed by the distilled

policy (at the lower-level). H-DRLN learns to perform multiple tasks in the Minecraft game
11
with

lower sample complexity and better performance compared to standard RL. The main limitation of

H-DRLN is that the policies of subtasks need to be pre-trained using manually defined objectives

(before distillation). Moreover, H-DRLN enables distillation of the existing policies into a target

policy but does not provide a method for continual discovery of new subtasks.

3.4.2 Transfer + Agent-space Subtasks. A subtask policy learned in a particular task domain is

conditioned on the state space 𝑆 of that particular domain. If that policy is transferred to a new task

domain whose state space is different from 𝑆 , then the policy may no longer be optimal. To address

this issue, it is necessary to achieve domain-invariant transfer such that the subtask policies are

robust to the varying state spaces. Konidaris et al [26] proposed an approach to learn Options which

can be transferred to various tasks with different state spaces. An Option is a subtask representation

as defined in subsection 3.1.2. The invariance is achieved by using two separate state representations,

one in the task-space and the other in the agent-space. The agent-space representation contains

features which are dependent on the agent and invariant across various tasks. Option policies are

learned in the agent-space and they can be transferred to various tasks with different task-spaces

as long as the agent-space remains the same across those tasks. The higher-level policy, which

selects an Option for execution, is learned using the task-space and adapts according to the active

task. The authors design multiple versions of their own task domains to evaluate this method. It

is found that introducing agent-space Options improves the agent’s performance compared to

regular Option-based techniques [11]. The main limitations of this approach are that the Options

are not automatically discovered since their policies are learned using pre-defined rewards and the

distinction of the agent-space from task-space needs to be manually defined.

3.4.3 Transfer + Meta-learning of Subtasks. Apart from efficiently transferring pretrained subtasks,

it is also important to discover subtasks across multiple tasks from scratch. Frans et al [60] pro-

posed a deep HRL approach for discovering Options via meta-learning on multiple related tasks.

11
https://github.com/vkurenkov/hierarchical-skill-acquisition

, Vol. 1, No. 1, Article . Publication date: August 2023.

https://github.com/vkurenkov/hierarchical-skill-acquisition

Hierarchical Reinforcement Learning: A Comprehensive Survey 23

This approach, called Meta Learning Shared Hierarchies (MLSH), contains a set of Options with

parameters shared across different tasks, which are learned from scratch by jointly maximizing

the expected rewards obtained in all the tasks (meta-learning). MLSH does not use any other

handcrafted rewards or subgoals. The learned Options are transferred to the unseen tasks by using

task-specific higher-level policies. MLSH is evaluated in the MuJoCo [37] locomotion domain

on which it outperforms standard RL and Option-Critic [56]. The main limitation of MLSH is

that the number of Options needs to be fixed, which limits the diversity of tasks which can be

performed using MLSH. Simply increasing the number of Options would require an agent to store

and learn a large number of Option policies which is likely to be inefficient in terms of memory

and computation.

3.5 Multi-agent Hierarchical Reinforcement Learning (MAHRL)
This subsection reviews the approaches for learning to coordinate multiple HRL agents on a single

joint task. The MAHRL class represents all such approaches with or without subtask discovery. In

the standard Multi Agent Reinforcement Learning (MARL) [7, 46, 58, 62], multiple agents learn to

coordinate their primitive action policies by optimizing a joint task objective and, occasionally, by

sharing common information about their states and actions. Going beyond standard MARL, the

benefits of task decomposition can also be exploited for multi-agent coordination by dividing a

joint task into multiple subtasks distributed across different HRL agents. Each agent can perform

more than one subtask and different agents learn to coordinate their higher-level policies (that

choose the subtasks) rather than just the primitive action policies. In certain cases, the agents may

only coordinate at the higher-level while treating their primitive action policies as independent of

each other [53]. Learning to coordinate among HRL agents is called Multi-agent HRL (MAHRL)

[25].

Developing MAHRL agents is a non-trivial challenge due to different complex issues involved. All

the usual issues found in the standard MARL also apply to MAHRL, such as the non-stationarity due

to multiple agents learning simultaneously, partial observability due to limited communication, and

difficulty of reward distribution in case of heterogeneous agents. However, the use of hierarchical

policies (for all the agents) also introduces a few additional issues which are unique to MAHRL,

described as follows:

• Synchronization of subtask terminations across different agents. The synchronization
of the decisions made by different agents is affected by the terminations of their subtasks

(i.e., 𝛽𝜔) [18]. The subtasks of all the agents can be terminated in a synchronized manner

by forcefully terminating all of them when the subtask of any one agent terminates or

introducing a waiting time until all the subtasks terminate naturally. This scheme makes it

easy to coordinate decisions but also puts a forced bias on the termination conditions which

may cause sub-optimal behaviour. Another scheme is asynchronous termination in which

each agent’s subtask terminates independently of the terminations of other agents’ subtasks.

This scheme is free from any forced interruption but makes it difficult to coordinate decisions

as they occur asynchronously.

• Subtask discovery in the context of other agents’ behaviours. An agent must account

for the presence of other agents in the environment during subtask discovery. Since other

agents are non-stationary elements of an agent’s environment, the discovered subtask space

itself may become non-stationary. This also makes independent subtask discovery (ISD) quite

challenging because the applicability of the discovered subtasks of an agent depends not only

on the target task dynamics but also on the other agents present in a target task.

, Vol. 1, No. 1, Article . Publication date: August 2023.

24 Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek

Definitions of key terms and concepts. A few important terms and concepts used in this

subsection, in the context of HRL, are defined below.

Centralized agents implies a paradigm in which all the agents share the highest-level of their

hierarchical policies using a single central policy (e.g. a central manager policy [86]).

Decentralized agents with centralized learning implies a paradigm in which all the agents have

their own separate hierarchical policies (no central policy), but they learn by centralized information

sharing (or communication). The information generally consists of the state observations and the

subtasks being executed by different agents.

Fully decentralized agents implies a paradigm in which all the agents have decentralized hierarchi-

cal policies and learn without information sharing or central policies, under partial observability
12
.

Homogeneous agents are those agents which have similar subtasks spaces and hierarchical

structures. This implies that each agent may have the capability to independently perform the task

and there may not be significant inter-dependencies among different agents.

Heterogeneous agents are those agents which have different subtask spaces and hierarchical

structures. Hence, they are different in their capabilities and no individual agent may perform the

entire task on its own. The agents may have strong inter-dependencies such that one agent assists

another agent or it is impossible for an agent to receive task rewards unless another agent finishes

its subtasks.

The key MAHRL approaches are discussed henceforth. Please refer to Table 4 for a summary

of the approaches.

3.5.1 Learning Multi-Agent Hierarchical Policies. Ghavamzadeh et al [25] proposed an approach for

cooperation among homogeneous agents at different levels of their task decomposition hierarchies.

This approach is called Cooperative HRL. The authors use MAXQ [12] to define and learn the

hierarchical policy of each agent. This approach is developed upon an earlier work by Makar et al

[14]. The subtask space for each agent is predefined, using handcrafted reward function for each

subtask. The task decomposition hierarchy of each agent may consist of more than two levels and

each level can be defined as a cooperative or independent level. The agents cooperate in terms of

their subtasks. The primitive action level is independent for all the agents. Moreover, the subtasks of

different agents terminate using predefined asynchronous events. This approach uses decentralized
agents with centralized learning paradigm. All the agents are homogeneous and they learn their

decentralized hierarchical policies by sharing information about their local states and chosen

subtasks. The authors report better performance of Cooperative HRL against standard MARL in

an Automated Guided Vehicle (AGV) task for warehouse management and a Trash collection task.

In order to ease the requirement of continuous information sharing, the authors also proposed a

variant of this approach with communicate and non-communicate decisions at the higher levels of

every agent’s hierarchy.

Cooperative HRL addresses the issues of coordination and communication among homogeneous

agents which generally do not have strong inter-dependencies. However, this approach is not trivial

to apply in heterogeneous setting in which various agents perform different parts of a task and

typically have strong inter-dependencies, such that few agents can reach the rewarding states

while others take a preceding role to enable such agents. This implies that the task rewards may

be too sparse or delayed for certain agents, making the learning process difficult. Engineering

agent-specific rewards can be daunting in complex domains. Another limitation of the Cooperative

HRL is that it uses termination events which need to be manually specified for all the subtasks.

12
Entire information about the task environment, including the activity of other agents, is not available to an agent.

, Vol. 1, No. 1, Article . Publication date: August 2023.

Hierarchical Reinforcement Learning: A Comprehensive Survey 25

Table 4. MAHRL: Approaches for Multi Agent Hierarchical Reinforcement Learning.

Approach Paradigm How is a subtask dis-

covered?

Definition of a subtask 𝜔 Suitable task domains Main utilities Main limitations

𝐼𝜔 𝜋𝜔 𝛽𝜔 𝑔𝜔 𝑟𝜔 state

space

action

space

type of

agents

Learning Multi-Agent Hierarchical Policies

Cooperative
HRL;
Ghavamzadeh

et al [25]

decentralized

agents with

centralized

learning

- PRE learned

using 𝑟𝜔

PRE,

async
n.r. PRE D, S D HOM MAHRL for homoge-

neous agents, with

flexible communica-

tion

restricted to homoge-

neous agents

ISEMO; Pate-

ria et al [94]

decentralized

agents with

centralized

learning

- PRE PRE learned,

async
n.r. n.r. D/C,

S/L

D

HOM/

HETR

MAHRL for het-

erogeneous or

homogeneous agents,

using a reward aug-

mentation strategy

based on inter-

dependencies among

the agents

the initiation con-

ditions of various

subtasks must

be predefined to

capture the inter-

dependencies among

the agents

Tang et al [84] decentralized

agents with

centralized

learning

- global learned

using 𝑟𝜔

PRE,

sync or
async

n.r. PRE D/C,

S/L

D HOM MAHRL for homoge-

neous agents using

deep learning

restricted to homoge-

neous agents

FMH ; Ahilan

et al [86]

centralized

agents

- global learned

using 𝑟𝜔

PRE,

sync
PRE w.r.t. 𝑔𝜔 D/C,

S/L

D

HOM/

HETR

MAHRL using cen-

tralized control

learning the central

high-level policy is

likely to be complex

if the joint subtask

space is large

PoEM; Liu et

al [53]

fully decentral-

ized agents

- PRE learned

from pre-

existing

demon-

strations

PRE,

async
n.r. n.r. D, S D

HOM/

HETR

MAHRL with full de-

centralization and un-

der partially observ-

ability

requires preexisting

demonstration trajec-

tories

Learning Multi-Agent Hierarchical Policies in Unification with Subtask Discovery

HSD; Yang et

al [102]

decentralized

agents with

centralized

learning

by maximizing Mu-

tual Information (MI)

between subtasks

and trajectories

global learned

using 𝑟𝜔

PRE,

sync
n.r. MI + task

reward

D/C,

S/L

D HOM discovery of diverse

skills unified with the

learning of hierar-

chical policies of all

agents

the number of skills

needs to be prede-

fined and fixed

DOC; Chakra-
vorty et al

[98]

centralized

agents

using policy gradi-

ents derived using

the task reward

global learned

using

task

rewards

learned,

async
n.r. n.r. D/C,

S/L

D

HOM/

HETR

learning Options hi-

erarchy in a unified

manner for all agents

the number of Op-

tions needs to be pre-

defined and fixed //
may perform poorly

if the task reward is

sparse

w.r.t. = with respect to; n.r. = not required ; sync = synchronous, async = asynchronous.
D = discrete, C = continuous, S = small, L = large. PRE = predefined, DISC = discovered, HOM = homogeneous,
HETR = heterogeneous.
All the task domains are assumed to have moderate to extreme reward sparsity.

Pateria et al [94] proposed an approach based on Options [11] to address both the above-

mentioned issues. This approach is called Inter Subtask Empowerment based Multi-agent Options,

or ISEMO. It exploits the inter-dependencies among heterogeneous agents to derive internal

rewards called Inter Subtask Empowerment Rewards (ISER). The inter-dependencies are based on

the predefined initiation conditions of various subtasks across different agents. ISER is given as a

positive reward to an agent that empowers another agent by creating the environment conditions

which satisfy the initiation conditions of the latter agent’s subtask(s). ISER is added to the (external)

task reward observed by the agent, thereby augmenting the task reward. Hence, even if the task

reward is sparse for a particular agent, it can still learn useful behaviour using ISER for enabling

other agents. Moreover, ISEMO uses the gradient-based learning of the termination function of

each subtask on the lines of the Option-Critic [56]. The learned terminations are asynchronous. The
authors compare ISEMO against the Cooperative HRL approach on a Search & Rescue task with a

mix of heterogeneous and homogeneous agents. ISEMO is found to perform better than Cooperative

HRL due to both ISER and the learned terminations. A similarity between ISEMO and Cooperative

HRL is that ISEMO also uses the decentralized agents with centralized learning paradigm in which

, Vol. 1, No. 1, Article . Publication date: August 2023.

26 Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek

the agents share the information about their local states and chosen subtasks. The main limitation

of ISEMO is that the initiation conditions of various subtasks need to be manually defined for

generating ISER. Also, ISEMO only learns the termination functions of the subtasks but requires

the policies of the subtasks to be predefined.

Tang et al. [84] proposed a deep learning approach for MAHRL with predefined subtasks (defined

using handcrafted subtask rewards). They use decentralized agents with centralized learning by

adapting deep MARL approaches such as QMIX [78] and CommNet [55] for MAHRL. Different

schemes for synchronous and asynchronous terminations of different subtasks are also proposed.

This approach is evaluated on a modified version of the Trash collection task [25] and an online

mobile game. It is found to outperform standard MARL and independently learned HRL agents.

However, it is only shown to work for homogeneous agents.

The approaches discussed above are applicable to decentralized agents with centralized learning.

Another approach is to learn centralized agents which have a common central policy at the highest-

level. Ahilan et al [86] proposed a deepMAHRL approach in which a central manager policy chooses

subtasks for a set of workers, simultaneously. The subtasks are predefined using subgoals. It is a

feudal hierarchy in which each worker policy is a universal policy. Each worker policy belongs

to a separate agent. Only the central manager receives the task rewards, while the workers learn

using the subgoal achievement rewards. This approach is called Feudal Multi-agent Hierarchies

(FMH). The workers can be heterogeneous or homogeneous. The terminations of different subtasks

being performed by different workers are synchronized by the manager. FMH is evaluated on

cooperative communication and navigation tasks in Multi-agent Particle Environments
13
and found

to outperform standard MARL.

The approaches discussed so far assume that the information can be shared among different

agents either via communication or by using central policy. A more challenging but realistic

paradigm is learning to coordinate fully decentralized agents. This paradigm does not assume the

availability of communication or centralization during training or execution. Hence, the agents need

to learn under partial observability [8]. Omidshafiei et al [42] introduced a theoretical framework for

decentralizedmulti-agent coordination using subtasks (macro-actions) called Decentralized Partially

Observable Semi-Markov MDPs (Dec-POSMDPs). Liu et al [53] provide an MAHRL approach based

on Dec-POSMDPs. In this approach, the subtasks for all the agents are predefined and it is assumed

that the agents have obtained a set of high-level trajectories from expert demonstrations containing

sequences of subtasks. Then, the policy hierarchies of the decentralized agents are learned using an

algorithm called Policy-based Expectation Maximization (PoEM) developed by the authors. All the

policies take history of state transitions as input to resolve partial observability. PoEM is evaluated

on multi-agent box pushing task and found to outperform dynamic-programming approaches. It

works for homogeneous or heterogeneous agents. The subtask terminations can be asynchronous.
However, a key limitation of this approach is that it requires the demonstration trajectories to be

given in advance.

3.5.2 Learning Multi-Agent Hierarchical Policies in Unification with Subtask Discovery. Yang et al
[102] proposed an MAHRL approach with skill

14
discovery based on variational inference [68]

(subsection 3.3.2). This approach is called Hierarchical Skill Discovery (HSD). The paradigm is

decentralized agents with centralized learning where the agents are homogeneous. HSD uses QMIX

[78] for centralized learning. In HSD, each agent uses a decentralized feudal hierarchy consisting

of two levels. It selects a one-hot encoded skill vector using its higher-level policy. The lower-level

universal policy takes this skill vector as an input and generates trajectories. This universal policy

13
https://github.com/openai/multiagent-particle-envs

14
Defined in subsection 2.3.

, Vol. 1, No. 1, Article . Publication date: August 2023.

https://github.com/openai/multiagent-particle-envs

Hierarchical Reinforcement Learning: A Comprehensive Survey 27

is learned by maximizing the Mutual Information (MI) between various input skill vectors and

the corresponding trajectories, resulting in the discovery of diverse skills. However, an agent must

also align the skill discovery with the coordination with other agents. Hence, HSD adds the task

reward to the MI objective of the lower-level universal policy so that the learned skills are not only

diverse but also grounded in the multi-agent task objective. The higher-level policy of each agent

is learned using the task reward only. The skills of different agents terminate in a synchronized
manner after fixed time steps. HSD is evaluated on a soccer game in STS2 simulator

15
. It performs

better than standard MARL and independently trained HRL agents. The authors also report few

identifiable discovered skills such as moving for offense, moving for defense, taking shots etc. They

also find that the skills discovered only with MI objective and without adding the task reward do

not lead to good performance. This shows that the discovered skills cannot be task-agnostic. The
main limitation of HSD is that the number of skills/subtasks has to be predefined and fixed. There

is no technique provided to grow this number or learn a large space of skills.

Chakravorty et al [98] proposed an MAHRL approach which extends the single-agent Option-

Critic framework [56] for multi-agent coordination. This approach is called Distributed Option-

Critic, or DOC. They use a single central higher-level policy for all the agents (hence, centralized
agents paradigm). The lower-level Option policies are decentralized. The agents can be hetero-

geneous or homogeneous. The agents also have a learned broadcast function to share the local

information with the central higher-level policy. The higher-level policy, lower-level Option policies,

and the Option termination functions are learned using policy gradients derived using the task

reward only. The learned terminations are asynchronous. The authors evaluate DOC on simple

grid-world tasks and find that it performs competitively against standard MARL.

3.6 Key Takeaways from the Survey of Approaches
Through the survey of the wide-ranging selection of HRL approaches in this section, we aim to

provide important insights about the expansive progress and the current state of the HRL research.

In this regard, a few key takeaways from the surveyed approaches are discussed henceforth.

There is no consolidated framework to learn hierarchical policies, different approaches
should be used for different benefits. The two sub-classes of the approaches for learning hi-

erarchical policies provide different but important benefits. The feudal hierarchy approaches use

subgoals (or instructions) to represent various possible subtasks [5, 50, 89, 76]. Such approaches

have the scope to scale-up the subtask space by either using a large number of subgoals or using a

low-dimensional continuous subgoal space. The scale-up is also possible because of the use of a

universal policy at each level, which means that a large number of subtasks do not require many

separate policies to be learned and stored, unlike the policy trees.

On the other hand, the policy tree approaches [11, 12, 10] are not constrained to learn only

subgoal-based (or instruction-based [89]) subtasks, unlike the feudal approaches. Different subtask

policies can represent different types of behaviours such as subgoal-based, trajectory-based (e.g.

’move in a circle’), general skills (e.g. ’drive through traffic’) etc. To summarize, different approaches
provide different benefits but there is no consolidated framework which covers all the aspects.

A variety of principles may be used for subtask discovery. There is no singular criteria
for the quality of discovered subtasks. HRL researchers have a variety of ideas about the prin-

ciple used for subtask discovery - partitioning state-action transition graphs [17, 24], clustering

[22], diversifying exploration [63, 82], variational inference [68] etc. These principles are mostly

15
https://github.com/electronicarts/SimpleTeamSportsSimulator

, Vol. 1, No. 1, Article . Publication date: August 2023.

https://github.com/electronicarts/SimpleTeamSportsSimulator

28 Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek

based on the objectives which are different from the task reward maximization objective. Hence,

the optimality of the discovered subtasks can not be theoretically guaranteed. The task reward may

itself be used for subtask discovery as shown by a few of the UNI approaches [56, 67, 77]. But, even

among these approaches, there are different ways to include the reward into the subtask discovery

process, e.g. using policy gradients [56, 67], using sub-optimality objective [77] etc. Hence, there is
no standard principle for subtask discovery yet. The reader must gauge a particular approach based on
the preferred characteristics.

New trends may emerge along the direction of large-scale skill discovery. In the recent

years, the reinforcement learning community has shown a growing interest in the continuous

control and robotic manipulation problems [73, 48]. Following this interest, HRL research has also

begun to produce approaches for the discovery of robotic skills [68, 79] and learning hierarchical

policies for continuous control [85, 76, 91]. This trend might continue in the near future, specially

concerning the large-scale acquisition of robotic continuous-control skills, such as jumping’, ’run-

ning’, ’moving objects’, ’driving through traffic’, ’parking’ etc., in a diversity of task domains [95]

and the adaptation of the UNI approaches for the end-to-end learning of a large collection of such

skills. This trend is important because diverse robotic skills are necessary for various real-life

applications of HRL such as in warehouse management, surgical robots, autonomous driving etc.

4 OPEN PROBLEMS FOR FUTURE RESEARCH
HRL is garnering more interest in the reinforcement learning community. However, there still are

different open problems concerning the scalability, efficiency, and theoretical robustness of HRL. A

few such open problems are discussed henceforth, with the aim of identifying broader directions for

future research. This discussion excludes the incremental issues and the extensions of any specific

approach.

Building a lifelong knowledge base of transferable skills. Humans learn diverse skills during

their lifetimes which are retained as valuable know-hows and selectively applied in different sce-

narios. The same faculty is essential for realizing the general HRL agents which can continuously

learn, retain, and reuse a broad range of skills over their lifetimes. Building a lifelong knowledge

base of skills requires the integration of multiple operations such as skill discovery, skill transfer,

and hierarchical learning using the relevant skills as subtasks to perform a new task. Currently,

the necessary operations are provided by disparate approaches, specifically for unsupervised skill

discovery [68, 75, 95], skill transfer [60, 66], skill composition [87], skill reuse [100], and selective

initiation of skills while training the HRL agent [101]. Further research and development is necessary
to design an integrated HRL framework which holistically combines these operations for maintaining
the lifelong knowledge bases of transferable skills.

Leveraging high-level planning for improved learning and adaptation. Replacing themodel-

free higher-level policy of an HRL agent with model-based planning, using the learned subtask-to-

subtask (or subgoal-to-subgoal) transition dynamics, can potentially accelerate the learning of the

agent on the long-horizons tasks and the adaptation to new tasks with shared dynamics [88, 81].

Zahavy et al [103] propose an approach to integrate high-level planning with HRL by using a set

of sub-rewards to decompose the task reward. It is assumed that the sub-rewards are predefined.

One subtask policy is defined for collecting one sub-reward. The higher-level planning heuristic

finds the optimal sequence of subtasks by solving a Travelling Salesman Problem [2]. Sohn et al

[81] propose Neural Subtask Graph Solver (NSGS) for planning. This approach uses a subtask

graph in which the subtasks, their preconditions, and their inter-dependencies are predefined. The

, Vol. 1, No. 1, Article . Publication date: August 2023.

Hierarchical Reinforcement Learning: A Comprehensive Survey 29

higher-level planner is a graph solver, which plans over the subtask graph. The graph can be used

to generalize to new tasks in a zero-shot fashion. The common limitation of both the approaches

outlined above is that the subtasks and/or their inter-dependencies need to be handcrafted. Eysen-

bach et al [88] propose an approach, called Search on the Replay Buffer (SoRB), which automatically

extracts the subgoal states from the experience replay buffer
16
and builds a graph over them. In

this graph, each node is a state and the weight of a transition edge between a pair of nodes is equal

to the distance between the nodes estimated using the learned Q-value function. The higher-level

planning heuristic finds the shortest-path over the subgoals in the graph, to reach a goal. The path

is traversed using the lower-level primitive-action policy trained via reinforcement learning. While

SoRB shows performance improvements over model-free reinforcement learning, it requires the

primitive-action policy to be trained before the higher-level graph can be constructed for planning.

Hence, SoRB is not end-to-end unified and it only addresses the problem of fast adaptation on the

new goal-directed tasks, after learning the primitive-action policy and the higher-level graph on

the previous goal-directed tasks.

To summarize, there are various aspects to consider when integrating high-level planning with

HRL. Automatic discovery of subtasks is paramount. More investigation is required on learning
the subtask inter-dependencies automatically, instead of handcrafting them. New approaches should
also be developed for the end-to-end unification of higher-level planning and lower-level policy learning.

Providing theoretical support for HRL. HRL delivers apparent practical (or empirical) ben-

efits over standard RL in many long-horizon task domains [76, 91, 67, 56, 50]. In theory, however,

there is no incentive for using a hierarchical policy in terms of Q-value maximization alone. Stan-

dard reinforcement learning, especially Q-learning [4], is theoretically guaranteed to converge to

the desired maximum Q-value [16] using only a primitive action policy. Majority of the empirical
performance benefits of HRL may simply be due to improved exploration [28, 93]. Nachum et al [93],

however, also show that a sophisticated non-hierarchical exploration scheme paired with a standard

RL agent may provide equivalent performance as an HRL agent. Therefore,more theoretical research
needs to be done in order to support the empirical benefits of HRL and to identify the problem domains
in which HRL provides clear advantage in terms of optimal performance.

5 CONCLUSION
This survey provides a panoramic overview of the research done so far in the field of Hierarchical

Reinforcement Learning (HRL), from the classical approaches to the recent advances. A novel

and general taxonomy is devised that organizes the approaches into five broad classes based

the key challenges they address, which are: (i) Learning Hierarchical Policy (LHP), (ii) Learning

Hierarchical Policy in Unificationwith Subtask Discovery (UNI), (iii) Independent Subtask Discovery

(ISD), (iv) Transfer Learning with HRL (TransferHRL), and (v) Multi-agent HRL (MAHRL). Further

classification of the approaches is also provided on the basis of the specific methodologies. Through

the survey, we find that significant advances have been made with respect to addressing the two

main sub-problems of HRL - how to learn a hierarchical policy and how to automatically discover

subtasks - as mentioned in the HRL problem statement (subsection 2.2.3). The field is now making

strides in the directions of transfer learning and multi-agent learning using HRL, in which new

trends may emerge, specifically concerning subtask discovery.

Despite this noteworthy progress, there is scope for further growth in HRL to encourage its

wider acceptability as a scalable and robust paradigm. In this regard, we identify a set of important

open problems in order to motivate the future research and advancements. These chosen problems

16
A storage of several experience data samples, of the form (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) , used to train an agent.

, Vol. 1, No. 1, Article . Publication date: August 2023.

30 Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek

concern: (i) lifelong skill discovery and utilization for scalable HRL, (ii) improving the data efficiency

by leveraging high-level planning, and (iii) providing more theoretical guarantees of optimality of

the HRL approaches.

ACKNOWLEDGMENTS
This research was supported by the National Research Foundation, Singapore under its AI Singapore

Programme (AISG Award No: AISG2-RP-2020-019) and the Singapore Ministry of Education (MOE)

Academic Research Fund (AcRF) Tier-1 grant (19-C220-SMU-023).

REFERENCES
[1] Richard Bellman. 1954. The theory of dynamic programming. Bull. Amer. Math. Soc., 60, 6, (November 1954), 503–515.

Retrieved from https://projecteuclid.org/euclid.bams/1183519147.

[2] Richard Bellman. 1962. Dynamic programming treatment of the travelling salesman problem. J. ACM, 9, 1, (January

1962), 61–63. issn: 0004-5411. doi: 10.1145/321105.321111.

[3] Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss. 1970. A maximization technique occurring in the

statistical analysis of probabilistic functions of markov chains. Ann. Math. Statist., 41, 1, (February 1970), 164–171.

doi: https://doi.org/10.1214/aoms/1177697196.

[4] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning, 8, 3-4, 279–292. doi: https://doi.org/
10.1007/BF00992698.

[5] Peter Dayan and Geoffrey E Hinton. 1993. Feudal reinforcement learning. In Advances in Neural Information
Processing Systems. Volume 5. Morgan-Kaufmann, 271–278. Retrieved from https://dl.acm.org/doi/10.5555/645753.

668239.

[6] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Comput., 9, 8, (November 1997),

1735–1780. issn: 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

[7] Ming Tan. 1997. Multi-Agent Reinforcement Learning: Independent vs. Cooperative Agents. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 487–494. isbn: 1558604952. Retrieved from https://dl.acm.org/doi/10.5555/

284860.284934.

[8] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. 1998. Planning and acting in partially

observable stochastic domains. Artif. Intell., 101, 1–2, (May 1998), 99–134. issn: 0004-3702. Retrieved from https:

//dl.acm.org/doi/10.5555/1643275.1643301.

[9] Oded Maron and Tomás Lozano-Pérez. 1998. A framework for multiple-instance learning. In Advances in Neural
Information Processing Systems. Volume 10. MIT Press, 570–576. Retrieved from https://dl.acm.org/doi/10.5555/

302528.302753.

[10] Ronald Parr and Stuart Russell. 1998. Reinforcement learning with hierarchies of machines. In Proceedings of the
1997 Conference on Advances in Neural Information Processing Systems 10 (NIPS ’97). MIT Press, Denver, Colorado,

USA, 1043–1049. isbn: 0262100762. Retrieved from https://dl.acm.org/doi/10.5555/302528.302894.

[11] Richard S. Sutton, Doina Precup, and Satinder Singh. 1999. Between mdps and semi-mdps: a framework for

temporal abstraction in reinforcement learning. Artif. Intell., 112, 1–2, (August 1999), 181–211. issn: 0004-3702. doi:
10.1016/S0004-3702(99)00052-1.

[12] Thomas G. Dietterich. 2000. Hierarchical reinforcement learning with the maxq value function decomposition. J.
Artif. Int. Res., 13, 1, (November 2000), 227–303. issn: 1076-9757. Retrieved from https://dl.acm.org/doi/10.5555/

1622262.1622268.

[13] Fredrik Linåker. 2000. Time series segmentation using an adaptive resource allocating vector quantization network

based on change detection. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks
(IJCNN’00)-Volume 6 - Volume 6 (IJCNN ’00). IEEE Computer Society, USA, 6323. isbn: 0769506194. doi: 10.1109/

IJCNN.2000.859416.

[14] Rajbala Makar, Sridhar Mahadevan, and Mohammad Ghavamzadeh. 2001. Hierarchical multi-agent reinforcement

learning. In Proceedings of the Fifth International Conference on Autonomous Agents (AGENTS ’01). Association for

Computing Machinery, Montreal, Quebec, Canada, 246–253. isbn: 158113326X. doi: 10.1145/375735.376302.

[15] Amy McGovern and Andrew G. Barto. 2001. Automatic discovery of subgoals in reinforcement learning using

diverse density. In Proceedings of the Eighteenth International Conference on Machine Learning (ICML ’01). Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 361–368. isbn: 1558607781. Retrieved from https://dl.acm.org/

doi/10.5555/645530.655681.

[16] Francisco S Melo. 2001. Convergence of q-learning: a simple proof. Institute of Systems and Robotics, Tech. Rep., 1–4.
Retrieved from http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf.

, Vol. 1, No. 1, Article . Publication date: August 2023.

https://projecteuclid.org/euclid.bams/1183519147
https://doi.org/10.1145/321105.321111
https://doi.org/https://doi.org/10.1214/aoms/1177697196
https://doi.org/https://doi.org/10.1007/BF00992698
https://doi.org/https://doi.org/10.1007/BF00992698
https://dl.acm.org/doi/10.5555/645753.668239
https://dl.acm.org/doi/10.5555/645753.668239
https://doi.org/10.1162/neco.1997.9.8.1735
https://dl.acm.org/doi/10.5555/284860.284934
https://dl.acm.org/doi/10.5555/284860.284934
https://dl.acm.org/doi/10.5555/1643275.1643301
https://dl.acm.org/doi/10.5555/1643275.1643301
https://dl.acm.org/doi/10.5555/302528.302753
https://dl.acm.org/doi/10.5555/302528.302753
https://dl.acm.org/doi/10.5555/302528.302894
https://doi.org/10.1016/S0004-3702(99)00052-1
https://dl.acm.org/doi/10.5555/1622262.1622268
https://dl.acm.org/doi/10.5555/1622262.1622268
https://doi.org/10.1109/IJCNN.2000.859416
https://doi.org/10.1109/IJCNN.2000.859416
https://doi.org/10.1145/375735.376302
https://dl.acm.org/doi/10.5555/645530.655681
https://dl.acm.org/doi/10.5555/645530.655681
http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf

Hierarchical Reinforcement Learning: A Comprehensive Survey 31

[17] Ishai Menache, Shie Mannor, and Nahum Shimkin. 2002. Q-cut - dynamic discovery of sub-goals in reinforcement

learning. In Proceedings of the 13th European Conference on Machine Learning (ECML ’02). Springer-Verlag, Berlin,

Heidelberg, 295–306. isbn: 3540440364. Retrieved from https://dl.acm.org/doi/10.5555/645329.650060.

[18] Khashayar Rohanimanesh and Sridhar Mahadevan. 2002. Learning to take concurrent actions. In Proceedings of the
15th International Conference on Neural Information Processing Systems (NIPS’02). MIT Press, Cambridge, MA, USA,

1651–1658. Retrieved from https://dl.acm.org/doi/10.5555/2968618.2968823.

[19] Martin Stolle and Doina Precup. 2002. Learning options in reinforcement learning. In International Symposium on
abstraction, reformulation, and approximation. Springer, 212–223. doi: https://doi.org/10.1007/3-540-45622-8_16.

[20] Andrew G Barto and Sridhar Mahadevan. 2003. Recent advances in hierarchical reinforcement learning. Discrete
event dynamic systems, 13, 1-2, 41–77. doi: https://doi.org/10.1023/A:1025696116075.

[21] G Dantzig and Delbert Ray Fulkerson. 2003. On the max flow min cut theorem of networks. Linear inequalities and
related systems, 38, 225–231.

[22] Bram Bakker and Jürgen Schmidhuber. 2004. Hierarchical reinforcement learning with subpolicies specializing

for learned subgoals. In Proceedings of the IASTED International Conference on Neural Networks and Computational
Intelligence, NCI 2004, February 23-25, 2004, Grindelwald, Switzerland. IASTED/ACTA Press, 125–130. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.218.3904&rep=rep1&type=pdf.

[23] Claudio Turchetti. 2004. Stochastic models of neural networks. Volume 102. IOS Press. Available at https://www.

iospress.nl/book/stochastic-models-of-neural-networks-2/.

[24] Özgür Şimşek, Alicia P. Wolfe, and Andrew G. Barto. 2005. Identifying useful subgoals in reinforcement learning

by local graph partitioning. In (ICML ’05). Association for Computing Machinery, Bonn, Germany, 816–823. isbn:

1595931805. doi: 10.1145/1102351.1102454.

[25] Mohammad Ghavamzadeh, Sridhar Mahadevan, and Rajbala Makar. 2006. Hierarchical multi-agent reinforcement

learning. Autonomous Agents and Multi-Agent Systems, 13, 2, 197–229. doi: https://doi.org/10.1007/s10458-006-7035-
4.

[26] George Konidaris and Andrew Barto. 2007. Building portable options: skill transfer in reinforcement learning.

In Proceedings of the 20th International Joint Conference on Artifical Intelligence (IJCAI’07). Morgan Kaufmann

Publishers Inc., Hyderabad, India, 895–900. Retrieved from https://dl.acm.org/doi/10.5555/1625275.1625420.

[27] Sridhar Mahadevan and Mauro Maggioni. 2007. Proto-value functions: a laplacian framework for learning rep-

resentation and control in markov decision processes. J. Mach. Learn. Res., 8, (December 2007), 2169–2231. issn:

1532-4435. Retrieved from https://dl.acm.org/doi/10.5555/1314498.1314570.

[28] Nicholas K. Jong, Todd Hester, and Peter Stone. 2008. The utility of temporal abstraction in reinforcement learning.

In Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems - Volume 1
(AAMAS ’08). International Foundation for Autonomous Agents and Multiagent Systems, Estoril, Portugal, 299–306.

isbn: 9780981738109. Retrieved from https://dl.acm.org/doi/10.5555/1402383.1402429.

[29] Özgür Şimşek and Andrew G. Barto. 2008. Skill characterization based on betweenness. In Proceedings of the 21st
International Conference on Neural Information Processing Systems (NIPS’08). Curran Associates Inc., Vancouver,

British Columbia, Canada, 1497–1504. isbn: 9781605609492. Retrieved from https://dl.acm.org/doi/10.5555/2981780.

2981967.

[30] George Konidaris and Andrew Barto. 2009. Skill discovery in continuous reinforcement learning domains using

skill chaining. In Proceedings of the 22nd International Conference on Neural Information Processing Systems (NIPS’09).
Curran Associates Inc., Vancouver, British Columbia, Canada, 1015–1023. isbn: 9781615679119. Retrieved from

https://dl.acm.org/doi/10.5555/2984093.2984208.

[31] Stuart Russell and Peter Norvig. 2009. Artificial Intelligence: A Modern Approach. (3rd edition). Prentice Hall Press,

USA. isbn: 0136042597. Available at https://dl.acm.org/doi/book/10.5555/1671238.

[32] Melike Baykal-Gürsoy. 2010. Semi-markov decision processes. Wiley Encyclopedia of Operations Research and
Management Science. doi: https://doi.org/10.1002/9780470400531.eorms0757.

[33] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and Samy Bengio. 2010.

Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res., 11, (March 2010), 625–660. issn:

1532-4435. Retrieved from https://dl.acm.org/doi/10.5555/1756006.1756025.

[34] Bernhard Hengst. 2010. Hierarchical reinforcement learning. In Encyclopedia of Machine Learning. Springer US,
Boston, MA, 495–502. isbn: 978-0-387-30164-8. doi: https://doi.org/10.1007/978-0-387-30164-8_363.

[35] Kfir Y. Levy and Nahum Shimkin. 2011. Unified inter and intra options learning using policy gradient methods. In

Proceedings of the 9th European Conference on Recent Advances in Reinforcement Learning (EWRL’11). Springer-Verlag,

Athens, Greece, 153–164. isbn: 9783642299452. doi: 10.1007/978-3-642-29946-9_17.

[36] Alessandro Lazaric. 2012. Transfer in reinforcement learning: a framework and a survey. In Reinforcement Learning.
Springer, 143–173. doi: https://doi.org/10.1007/978-3-642-27645-3_5.

, Vol. 1, No. 1, Article . Publication date: August 2023.

https://dl.acm.org/doi/10.5555/645329.650060
https://dl.acm.org/doi/10.5555/2968618.2968823
https://doi.org/https://doi.org/10.1007/3-540-45622-8_16
https://doi.org/https://doi.org/10.1023/A:1025696116075
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.218.3904&rep=rep1&type=pdf
https://www.iospress.nl/book/stochastic-models-of-neural-networks-2/
https://www.iospress.nl/book/stochastic-models-of-neural-networks-2/
https://doi.org/10.1145/1102351.1102454
https://doi.org/https://doi.org/10.1007/s10458-006-7035-4
https://doi.org/https://doi.org/10.1007/s10458-006-7035-4
https://dl.acm.org/doi/10.5555/1625275.1625420
https://dl.acm.org/doi/10.5555/1314498.1314570
https://dl.acm.org/doi/10.5555/1402383.1402429
https://dl.acm.org/doi/10.5555/2981780.2981967
https://dl.acm.org/doi/10.5555/2981780.2981967
https://dl.acm.org/doi/10.5555/2984093.2984208
https://dl.acm.org/doi/book/10.5555/1671238
https://doi.org/https://doi.org/10.1002/9780470400531.eorms0757
https://dl.acm.org/doi/10.5555/1756006.1756025
https://doi.org/https://doi.org/10.1007/978-0-387-30164-8_363
https://doi.org/10.1007/978-3-642-29946-9_17
https://doi.org/https://doi.org/10.1007/978-3-642-27645-3_5

32 Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek

[37] E. Todorov, T. Erez, and Y. Tassa. 2012. Mujoco: a physics engine for model-based control. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 5026–5033. doi: 10.1109/IROS.2012.6386109.

[38] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014. On the properties of neural

machine translation: encoder–decoder approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics
and Structure in Statistical Translation. Association for Computational Linguistics, Doha, Qatar, (October 2014),

103–111. doi: 10.3115/v1/W14-4012.

[39] Diederik P. Kingma and Max Welling. 2014. Auto-encoding variational bayes. In 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings. Retrieved
from http://arxiv.org/abs/1312.6114.

[40] Mostafa Al-Emran. 2015. Hierarchical reinforcement learning: a survey. International journal of computing and
digital systems, 4, 02. doi: http://dx.doi.org/10.12785/IJCDS/040207.

[41] VolodymyrMnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Mar-

tin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. 2015. Human-level control through deep reinforcement

learning. Nature, 518, 7540, 529–533. doi: https://doi.org/10.1038/nature14236.
[42] S. Omidshafiei, A. Agha-mohammadi, C. Amato, and J. P. How. 2015. Decentralized control of partially observable

markov decision processes using belief space macro-actions. In 2015 IEEE International Conference on Robotics and
Automation (ICRA), 5962–5969. doi: 10.1109/ICRA.2015.7140035.

[43] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. 2015. Trust region policy

optimization. In Proceedings of the 32nd International Conference on Machine Learning (Proceedings of Machine

Learning Research). Volume 37. PMLR, Lille, France, (July 2015), 1889–1897. Retrieved from http://proceedings.mlr.

press/v37/schulman15.html.

[44] Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Rémi Munos. 2016. Unifying

count-based exploration and intrinsic motivation. In Proceedings of the 30th International Conference on Neural
Information Processing Systems (NIPS’16). Curran Associates Inc., Barcelona, Spain, 1479–1487. isbn: 9781510838819.

Retrieved from https://dl.acm.org/doi/10.5555/3157096.3157262.

[45] Christian Daniel, Herke Van Hoof, Jan Peters, and Gerhard Neumann. 2016. Probabilistic inference for determining

options in reinforcement learning. Machine Learning, 104, 2-3, 337–357. doi: https://doi.org/10.1007/s10994-016-
5580-x.

[46] Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson. 2016. Learning to communicate with

deep multi-agent reinforcement learning. In Proceedings of the 30th International Conference on Neural Information
Processing Systems (NIPS’16). Curran Associates Inc., Barcelona, Spain, 2145–2153. isbn: 9781510838819. Retrieved

from https://dl.acm.org/doi/10.5555/3157096.3157336.

[47] Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. 2016. Variational intrinsic control. arXiv: 1611.07507.

Retrieved from http://arxiv.org/abs/1611.07507.

[48] Shixiang Gu, Ethan Holly, Timothy P. Lillicrap, and Sergey Levine. 2016. Deep reinforcement learning for robotic

manipulation. CoRR, abs/1610.00633. arXiv: 1610.00633. Retrieved from http://arxiv.org/abs/1610.00633.

[49] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick, and Ross B. Girshick.

2016. CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning. arXiv: 1612.06890.

Retrieved from http://arxiv.org/abs/1612.06890.

[50] Tejas D. Kulkarni, Karthik R. Narasimhan, Ardavan Saeedi, and Joshua B. Tenenbaum. 2016. Hierarchical deep

reinforcement learning: integrating temporal abstraction and intrinsic motivation. In Proceedings of the 30th
International Conference on Neural Information Processing Systems (NIPS’16). Curran Associates Inc., Barcelona,

Spain, 3682–3690. isbn: 9781510838819. Retrieved from https://dl.acm.org/doi/10.5555/3157382.3157509.

[51] Tejas D. Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J. Gershman. 2016. Deep successor reinforcement

learning. arXiv: 1606.02396. Retrieved from http://arxiv.org/abs/1606.02396.

[52] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and

Daan Wierstra. 2016. Continuous control with deep reinforcement learning. In 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. Retrieved
from https://arxiv.org/abs/1509.02971.

[53] Miao Liu, Christopher Amato, Emily P. Anesta, J. Daniel Griffith, and Jonathan P. How. 2016. Learning for de-

centralized control of multiagent systems in large, partially-observable stochastic environments. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI’16). AAAI Press, Phoenix, Arizona, 2523–2529.
https://dl.acm.org/doi/10.5555/3016100.3016253.

[54] Andrei A. Rusu, Sergio Gomez Colmenarejo, Çaglar Gülçehre, Guillaume Desjardins, James Kirkpatrick, Razvan

Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. 2016. Policy distillation. In 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings.
Retrieved from https://arxiv.org/abs/1511.06295.

, Vol. 1, No. 1, Article . Publication date: August 2023.

https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.3115/v1/W14-4012
http://arxiv.org/abs/1312.6114
https://doi.org/http://dx.doi.org/10.12785/IJCDS/040207
https://doi.org/https://doi.org/10.1038/nature14236
https://doi.org/10.1109/ICRA.2015.7140035
 http://proceedings.mlr.press/v37/schulman15.html
 http://proceedings.mlr.press/v37/schulman15.html
https://dl.acm.org/doi/10.5555/3157096.3157262
https://doi.org/https://doi.org/10.1007/s10994-016-5580-x
https://doi.org/https://doi.org/10.1007/s10994-016-5580-x
https://dl.acm.org/doi/10.5555/3157096.3157336
https://arxiv.org/abs/1611.07507
http://arxiv.org/abs/1611.07507
https://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1610.00633
https://arxiv.org/abs/1612.06890
http://arxiv.org/abs/1612.06890
https://dl.acm.org/doi/10.5555/3157382.3157509
https://arxiv.org/abs/1606.02396
http://arxiv.org/abs/1606.02396
https://arxiv.org/abs/1509.02971
https://dl.acm.org/doi/10.5555/3016100.3016253
https://arxiv.org/abs/1511.06295

Hierarchical Reinforcement Learning: A Comprehensive Survey 33

[55] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. 2016. Learning multiagent communication with backpropaga-

tion. In Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS’16). Curran
Associates Inc., Barcelona, Spain, 2252–2260. isbn: 9781510838819. Retrieved from https://dl.acm.org/doi/10.5555/

3157096.3157348.

[56] Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. The option-critic architecture. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence (AAAI’17). AAAI Press, San Francisco, California, USA, 1726–1734.

Retrieved from https://dl.acm.org/doi/10.5555/3298483.3298491.

[57] Carlos Florensa, Yan Duan, and Pieter Abbeel. 2017. Stochastic neural networks for hierarchical reinforcement

learning. arXiv: 1704.03012. Retrieved from http://arxiv.org/abs/1704.03012.

[58] Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson. 2017. Counter-

factual multi-agent policy gradients. arXiv: 1705.08926. Retrieved from http://arxiv.org/abs/1705.08926.

[59] Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. 2017. Multi-level discovery of deep options. arXiv:

1703.08294. Retrieved from http://arxiv.org/abs/1703.08294.

[60] Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. 2017. Meta learning shared hierarchies.

arXiv: 1710.09767. Retrieved from http://arxiv.org/abs/1710.09767.

[61] Martin Klissarov, Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. Learnings options end-to-end for continuous

action tasks. CoRR, abs/1712.00004. arXiv: 1712.00004. Retrieved from http://arxiv.org/abs/1712.00004.

[62] Ryan Lowe, YiWu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. 2017. Multi-agent actor-critic for mixed

cooperative-competitive environments. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (NIPS’17). Curran Associates Inc., Long Beach, California, USA, 6382–6393. isbn: 9781510860964.

Retrieved from https://dl.acm.org/doi/10.5555/3295222.3295385.

[63] Marlos C. Machado, Marc G. Bellemare, and Michael Bowling. 2017. A laplacian framework for option discovery in

reinforcement learning. In Proceedings of the 34th International Conference onMachine Learning - Volume 70 (ICML’17).

JMLR.org, Sydney, NSW, Australia, 2295–2304. Retrieved from https://dl.acm.org/doi/10.5555/3305890.3305918.

[64] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. 2017. Curiosity-driven exploration by self-

supervised prediction. In Proceedings of the 34th International Conference on Machine Learning - Volume 70 (ICML’17).

JMLR.org, Sydney, NSW, Australia, 2778–2787. Retrieved from https://dl.acm.org/doi/10.5555/3305890.3305968.

[65] Sainbayar Sukhbaatar, Ilya Kostrikov, Arthur Szlam, and Rob Fergus. 2017. Intrinsic motivation and automatic

curricula via asymmetric self-play. arXiv: 1703.05407. Retrieved from http://arxiv.org/abs/1703.05407.

[66] Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J. Mankowitz, and Shie Mannor. 2017. A deep hierarchical

approach to lifelong learning in minecraft. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence
(AAAI’17). AAAI Press, San Francisco, California, USA, 1553–1561. Retrieved from https://dl.acm.org/doi/10.5555/

3298239.3298465.

[67] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David Silver, and Koray

Kavukcuoglu. 2017. Feudal networks for hierarchical reinforcement learning. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70 (ICML’17). JMLR.org, Sydney, NSW, Australia, 3540–3549. Retrieved

from https://dl.acm.org/doi/10.5555/3305890.3306047.

[68] Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. 2018. Variational option discovery algorithms.

arXiv: 1807.10299. Retrieved from http://arxiv.org/abs/1807.10299.

[69] Mordechai Ben-Ari and Francesco Mondada. 2018. Finite state machines. In Elements of Robotics. Springer, 55–61.
doi: https://doi.org/10.1007/978-3-319-62533-1_4.

[70] Zhiyuan Chen and Bing Liu. 2018. Lifelong machine learning. Number 3. Volume 12. Morgan & Claypool Publishers,

1–207. doi: 10.2200/S00737ED1V01Y201610AIM033.

[71] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. 2018. Diversity is all you need: learning

skills without a reward function. arXiv: 1802.06070. Retrieved from http://arxiv.org/abs/1802.06070.

[72] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft actor-critic: off-policy maximum

entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th International Conference on
Machine Learning (Proceedings of Machine Learning Research). Volume 80. PMLR, Stockholmsmässan, Stockholm

Sweden, (October 2018), 1861–1870. Retrieved from http://proceedings.mlr.press/v80/haarnoja18b.html.

[73] Tuomas Haarnoja, Aurick Zhou, Sehoon Ha, Jie Tan, George Tucker, and Sergey Levine. 2018. Learning to walk via

deep reinforcement learning. arXiv: 1812.11103. Retrieved from http://arxiv.org/abs/1812.11103.

[74] Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. 2018. When waiting is not an option: learning

options with a deliberation cost. In Proceedings of the AAAI Conference on Artificial Intelligence number 1. Volume 32.

Retrieved from https://ojs.aaai.org/index.php/AAAI/article/view/11831.

[75] Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin A. Riedmiller. 2018. Learning an

embedding space for transferable robot skills. In 6th International Conference on Learning Representations, ICLR

, Vol. 1, No. 1, Article . Publication date: August 2023.

https://dl.acm.org/doi/10.5555/3157096.3157348
https://dl.acm.org/doi/10.5555/3157096.3157348
https://dl.acm.org/doi/10.5555/3298483.3298491
https://arxiv.org/abs/1704.03012
http://arxiv.org/abs/1704.03012
https://arxiv.org/abs/1705.08926
http://arxiv.org/abs/1705.08926
https://arxiv.org/abs/1703.08294
http://arxiv.org/abs/1703.08294
https://arxiv.org/abs/1710.09767
http://arxiv.org/abs/1710.09767
https://arxiv.org/abs/1712.00004
http://arxiv.org/abs/1712.00004
https://dl.acm.org/doi/10.5555/3295222.3295385
https://dl.acm.org/doi/10.5555/3305890.3305918
https://dl.acm.org/doi/10.5555/3305890.3305968
https://arxiv.org/abs/1703.05407
http://arxiv.org/abs/1703.05407
https://dl.acm.org/doi/10.5555/3298239.3298465
https://dl.acm.org/doi/10.5555/3298239.3298465
https://dl.acm.org/doi/10.5555/3305890.3306047
https://arxiv.org/abs/1807.10299
http://arxiv.org/abs/1807.10299
https://doi.org/https://doi.org/10.1007/978-3-319-62533-1_4
https://doi.org/10.2200/S00737ED1V01Y201610AIM033
https://arxiv.org/abs/1802.06070
http://arxiv.org/abs/1802.06070
http://proceedings.mlr.press/v80/haarnoja18b.html
https://arxiv.org/abs/1812.11103
http://arxiv.org/abs/1812.11103
https://ojs.aaai.org/index.php/AAAI/article/view/11831

34 Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek

2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net. Retrieved from

https://openreview.net/forum?id=rk07ZXZRb.

[76] Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. 2018. Data-efficient hierarchical reinforcement learning.

In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS’18). Curran
Associates Inc., Montréal, Canada, 3307–3317. Retrieved from https://dl.acm.org/doi/10.5555/3327144.3327250.

[77] Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. 2018. Near-optimal representation learning for

hierarchical reinforcement learning. arXiv: 1810.01257. Retrieved from http://arxiv.org/abs/1810.01257.

[78] Tabish Rashid, Mikayel Samvelyan, Christian Schröder de Witt, Gregory Farquhar, Jakob N. Foerster, and Shimon

Whiteson. 2018. QMIX: monotonic value function factorisation for deep multi-agent reinforcement learning. arXiv:

1803.11485. Retrieved from http://arxiv.org/abs/1803.11485.

[79] John D. Co-Reyes, Yuxuan Liu, Abhishek Gupta, Benjamin Eysenbach, Pieter Abbeel, and Sergey Levine. 2018.

Self-consistent trajectory autoencoder: hierarchical reinforcement learning with trajectory embeddings. arXiv:

1806.02813. Retrieved from http://arxiv.org/abs/1806.02813.

[80] Matthew Riemer, Miao Liu, and Gerald Tesauro. 2018. Learning abstract options. In Advances in Neural Information
Processing Systems. Volume 31. Curran Associates, Inc., 10424–10434. Retrieved from https://dl.acm.org/doi/10.5555/

3327546.3327704.

[81] Sungryull Sohn, Junhyuk Oh, and Honglak Lee. 2018. Hierarchical reinforcement learning for zero-shot gen-

eralization with subtask dependencies. In Proceedings of the 32nd International Conference on Neural Informa-
tion Processing Systems (NIPS’18). Curran Associates Inc., Montréal, Canada, 7156–7166. Retrieved from https:

//dl.acm.org/doi/10.5555/3327757.3327818.

[82] Sainbayar Sukhbaatar, Emily Denton, Arthur Szlam, and Rob Fergus. 2018. Learning goal embeddings via self-play

for hierarchical reinforcement learning. arXiv: 1811.09083. Retrieved from http://arxiv.org/abs/1811.09083.

[83] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: an introduction; 2nd ed. Adaptive computation
and machine learning. The MIT Press, Cambridge, MA. Available at https://mitpress.mit.edu/books/reinforcement-

learning-second-edition.

[84] Hongyao Tang, Jianye Hao, Tangjie Lv, Yingfeng Chen, Zongzhang Zhang, Hangtian Jia, Chunxu Ren, Yan Zheng,

Changjie Fan, and Li Wang. 2018. Hierarchical deep multiagent reinforcement learning. arXiv: 1809.09332. Retrieved

from http://arxiv.org/abs/1809.09332.

[85] Z. Yang, K. Merrick, L. Jin, and H. A. Abbass. 2018. Hierarchical deep reinforcement learning for continuous action

control. IEEE Transactions on Neural Networks and Learning Systems, 29, 11, 5174–5184. doi: 10.1109/TNNLS.2018.
2805379.

[86] Sanjeevan Ahilan and Peter Dayan. 2019. Feudal multi-agent hierarchies for cooperative reinforcement learning.

arXiv: 1901.08492. Retrieved from http://arxiv.org/abs/1901.08492.

[87] Andre Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygün, Philippe Hamel, Daniel Toyama,

Jonathan hunt, Shibl Mourad, David Silver, and Doina Precup. 2019. The option keyboard: combining skills in

reinforcement learning. In Advances in Neural Information Processing Systems. Volume 32. Curran Associates, Inc.,

13052–13062. Retrieved from https://proceedings.neurips.cc/paper/2019/file/251c5ffd6b62cc21c446c963c76cf214-

Paper.pdf.

[88] Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. 2019. Search on the replay buffer: bridging planning and

reinforcement learning. In Advances in Neural Information Processing Systems. Volume 32. Curran Associates, Inc.,

15246–15257. Retrieved from https://papers.nips.cc/paper/2019/file/5c48ff18e0a47baaf81d8b8ea51eec92-Paper.pdf.

[89] YiDing Jiang, Shixiang (Shane) Gu, Kevin PMurphy, and Chelsea Finn. 2019. Language as an abstraction for hierarchi-

cal deep reinforcement learning. InAdvances in Neural Information Processing Systems. Volume 32. Curran Associates,

Inc., 9419–9431. Retrieved from https://proceedings.neurips.cc/paper/2019/file/0af787945872196b42c9f73ead2565c8-

Paper.pdf.

[90] Khimya Khetarpal and Doina Precup. 2019. Learning options with interest functions. Proceedings of the AAAI
Conference on Artificial Intelligence, 33, 01, (July 2019), 9955–9956. doi: 10.1609/aaai.v33i01.33019955.

[91] Andrew Levy, George Dimitri Konidaris, Robert Platt Jr., and Kate Saenko. 2019. Learning multi-level hierarchies

with hindsight. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net. Retrieved from https://openreview.net/forum?id=ryzECoAcY7.

[92] Matheus R. F. MendonÇa, Artur Ziviani, and AndrÉ M. S. Barreto. 2019. Graph-based skill acquisition for reinforce-

ment learning. ACM Comput. Surv., 52, 1, Article 6, (February 2019), 26 pages. issn: 0360-0300. doi: 10.1145/3291045.

[93] Ofir Nachum, Haoran Tang, Xingyu Lu, Shixiang Gu, Honglak Lee, and Sergey Levine. 2019. Why does hierarchy

(sometimes) work so well in reinforcement learning? arXiv: 1909.10618. Retrieved from http://arxiv.org/abs/1909.

10618.

, Vol. 1, No. 1, Article . Publication date: August 2023.

https://openreview.net/forum?id=rk07ZXZRb
https://dl.acm.org/doi/10.5555/3327144.3327250
https://arxiv.org/abs/1810.01257
http://arxiv.org/abs/1810.01257
https://arxiv.org/abs/1803.11485
http://arxiv.org/abs/1803.11485
https://arxiv.org/abs/1806.02813
http://arxiv.org/abs/1806.02813
https://dl.acm.org/doi/10.5555/3327546.3327704
https://dl.acm.org/doi/10.5555/3327546.3327704
https://dl.acm.org/doi/10.5555/3327757.3327818
https://dl.acm.org/doi/10.5555/3327757.3327818
https://arxiv.org/abs/1811.09083
http://arxiv.org/abs/1811.09083
https://mitpress.mit.edu/books/reinforcement-learning-second-edition
https://mitpress.mit.edu/books/reinforcement-learning-second-edition
https://arxiv.org/abs/1809.09332
http://arxiv.org/abs/1809.09332
https://doi.org/10.1109/TNNLS.2018.2805379
https://doi.org/10.1109/TNNLS.2018.2805379
https://arxiv.org/abs/1901.08492
http://arxiv.org/abs/1901.08492
https://proceedings.neurips.cc/paper/2019/file/251c5ffd6b62cc21c446c963c76cf214-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/251c5ffd6b62cc21c446c963c76cf214-Paper.pdf
https://papers.nips.cc/paper/2019/file/5c48ff18e0a47baaf81d8b8ea51eec92-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/0af787945872196b42c9f73ead2565c8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/0af787945872196b42c9f73ead2565c8-Paper.pdf
https://doi.org/10.1609/aaai.v33i01.33019955
https://openreview.net/forum?id=ryzECoAcY7
https://doi.org/10.1145/3291045
https://arxiv.org/abs/1909.10618
http://arxiv.org/abs/1909.10618
http://arxiv.org/abs/1909.10618

Hierarchical Reinforcement Learning: A Comprehensive Survey 35

[94] Shubham Pateria, Budhitama Subagdja, and Ah-Hwee Tan. 2019. Multi-agent reinforcement learning in spatial

domain tasks using inter subtask empowerment rewards. In IEEE Symposium Series on Computational Intelligence,
SSCI 2019, Xiamen, China, December 6-9, 2019. IEEE, 86–93. doi: 10.1109/SSCI44817.2019.9002777.

[95] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. 2019. Dynamics-aware unsupervised

discovery of skills. arXiv: 1907.01657. Retrieved from http://arxiv.org/abs/1907.01657.

[96] Shangtong Zhang and Shimon Whiteson. 2019. Dac: the double actor-critic architecture for learning options. In

Advances in Neural Information Processing Systems. Volume 32. Curran Associates, Inc., 2012–2022. Retrieved from

https://proceedings.neurips.cc/paper/2019/file/4f284803bd0966cc24fa8683a34afc6e-Paper.pdf.

[97] Akhil Bagaria and George Konidaris. 2020. Option discovery using deep skill chaining. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. Retrieved from

https://openreview.net/forum?id=B1gqipNYwH.

[98] Jhelum Chakravorty, Patrick Nadeem Ward, Julien Roy, Maxime Chevalier-Boisvert, Sumana Basu, Andrei Lupu,

and Doina Precup. 2020. Option-critic in cooperative multi-agent systems. In Proceedings of the 19th International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS ’20). International Foundation for Autonomous

Agents and Multiagent Systems, Auckland, New Zealand, 1792–1794. isbn: 9781450375184. Retrieved from https:

//dl.acm.org/doi/abs/10.5555/3398761.3398984.

[99] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. 2020. Relay policy learning:

solving long-horizon tasks via imitation and reinforcement learning. In Proceedings of the Conference on Robot
Learning (Proceedings of Machine Learning Research). Volume 100. PMLR, (30 Oct–01 Nov 2020), 1025–1037.

Retrieved from http://proceedings.mlr.press/v100/gupta20a.html.

[100] Leonard Hasenclever, Fabio Pardo, Raia Hadsell, Nicolas Heess, and Josh Merel. 2020. CoMic: complementary task

learning & mimicry for reusable skills. In Proceedings of the 37th International Conference on Machine Learning
(Proceedings of Machine Learning Research). Volume 119. PMLR, (13–18 Jul 2020), 4105–4115. Retrieved from

http://proceedings.mlr.press/v119/hasenclever20a.html.

[101] Khimya Khetarpal, Martin Klissarov, Maxime Chevalier-Boisvert, Pierre-Luc Bacon, and Doina Precup. 2020.

Options of interest: temporal abstraction with interest functions. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, 4444–4451. Retrieved from https:

//aaai.org/ojs/index.php/AAAI/article/view/5871.

[102] Jiachen Yang, Igor Borovikov, and Hongyuan Zha. 2020. Hierarchical cooperative multi-agent reinforcement learning

with skill discovery. In Proceedings of the 19th International Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’20, Auckland, New Zealand, May 9-13, 2020. International Foundation for Autonomous Agents

and Multiagent Systems, 1566–1574. Retrieved from https://dl.acm.org/doi/abs/10.5555/3398761.3398941.

[103] Tom Zahavy, Avinatan Hasidim, Haim Kaplan, and Yishay Mansour. 2020. Planning in hierarchical reinforcement

learning: guarantees for using local policies. In (Proceedings of Machine Learning Research). Volume 117. PMLR, San

Diego, California, USA, (August 2020), 906–934. Retrieved from http://proceedings.mlr.press/v117/zahavy20a.html.

, Vol. 1, No. 1, Article . Publication date: August 2023.

https://doi.org/10.1109/SSCI44817.2019.9002777
https://arxiv.org/abs/1907.01657
http://arxiv.org/abs/1907.01657
https://proceedings.neurips.cc/paper/2019/file/4f284803bd0966cc24fa8683a34afc6e-Paper.pdf
https://openreview.net/forum?id=B1gqipNYwH
https://dl.acm.org/doi/abs/10.5555/3398761.3398984
https://dl.acm.org/doi/abs/10.5555/3398761.3398984
http://proceedings.mlr.press/v100/gupta20a.html
http://proceedings.mlr.press/v119/hasenclever20a.html
https://aaai.org/ojs/index.php/AAAI/article/view/5871
https://aaai.org/ojs/index.php/AAAI/article/view/5871
https://dl.acm.org/doi/abs/10.5555/3398761.3398941
http://proceedings.mlr.press/v117/zahavy20a.html

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Reinforcement Learning
	2.2 Hierarchical Reinforcement Learning
	2.3 Definitions of common terms and concepts

	3 Approaches for Hierarchical Reinforcement Learning
	3.1 Learning Hierarchical Policy (LHP)
	3.2 Learning Hierarchical Policy in Unification with Subtask Discovery (UNI)
	3.3 Independent Subtask Discovery (ISD)
	3.4 Transfer Learning with HRL (TransferHRL)
	3.5 Multi-agent Hierarchical Reinforcement Learning (MAHRL)
	3.6 Key Takeaways from the Survey of Approaches

	4 Open Problems for Future Research
	5 Conclusion
	Acknowledgments

