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Introduction
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C1: How to effectively train 
multiple HRL agents under 
complex sequential inter-
dependencies and sparse 

global rewards?

C2: How to unify single-agent
HRL with autonomous subgoal 
discovery while tackling slow 

end-to-end learning?

C3: How to learn subgoal 
graphs that produce more 

rewarding and feasible plans 
for single-agent Planning-

based ATD?

Long-horizon learning and planning 
problem: 
- long sequences of actions required to 
achieve task objectives
- high complexity of policy/plan search.

HRL: Hierarchical 
Reinforcement 
Learning

Research
Challenges

Overview



Contributions
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Method: Multi-agent HRL using Inter Subtask Empowerment Rewards (auxiliary rewards 
based on inter-dependencies).

- Better system performance than standard multi-agent HRL method that primarily relies on joint global 
rewards.

- A starting point for exploring principled approaches for training multiple HRL agents by learning their inter-
dependencies and mutual effects on each other.

- Can be applied in multi-agent logistics, disaster response operations, warehouse management etc.

Challenge: How to effectively train multiple HRL agents for coordination under complex 
sequential inter-dependencies and sparse global rewards?



Contributions
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Method: Single-agent End-to-End HRL using Integrated Discovery of Salient Subgoals
(explicit subgoal discovery)

- Better performance compared to state-of-the-art vanilla end-to-end HRL method that simply uses a large 
continuous subgoal space as the output space of the subgoal-selection policy.

- Significance as a starting point for researching and integrating various advantageous subgoal discovery 
heuristics into end-to-end HRL.

- Can be applied in goal-based navigation and robot manipulation tasks.

Challenge: How to unify single-agent HRL with autonomous subgoal discovery while 
tackling slow end-to-end learning?



Contributions
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Method: Value-based Subgoal Discovery and Automatic Graph Pruning to learn Subgoal 
Graphs for Single-agent Planning-based ATD

- Better performance compared to state-of-the-art subgoal graph methods that rely on simplistic ad-hoc 
heuristics for subgoal sampling and might also be prone to edge prediction errors.

- Can be used as a basis for developing reward-conforming heuristics for subgoal/state space abstraction and 
learning sparse models for higher-level planning using subgoals. 

- Can be applied in goal-based navigation and robot manipulation tasks.

Challenge: How to learn subgoal graphs that produce more rewarding and feasible plans for 
single-agent Planning-based ATD?



Improving Coordinated Multi-agent HRL using Inter 

Subtask Empowerment Rewards
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S. Pateria, B. Subagdja and A. Tan, "Multi-agent Reinforcement Learning in Spatial Domain Tasks using Inter Subtask 
Empowerment Rewards," 2019 IEEE Symposium Series on Computational Intelligence (SSCI), 2019

C1: How to effectively train 
multiple HRL agents under 
complex sequential inter-
dependencies and sparse 

global rewards?



• Context: Decentralized HRL agents, centralized learning for coordination to perform a long-horizon joint 
task.

Issues and Challenges:
• Primary: Difficulty of learning coordination across different HRL agents due to complex sequential inter-

dependencies and sparse global reward.

• Secondary: Fixed termination conditions or rules for various subtasks might result in sub-optimal 
performance due to a non-stationary environment consisting of multiple agents

Scope
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ISEMO: Inter Subtask Empowerment based Multi-agent Options
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Heterogenous + Homogenous HRL 
agents with implicit sequential 
inter-dependencies 

Define a set of subtasks for each agent. Each 
subtask is defined as an Option* with the 
following components:

- Handcrafted preconditions with respect 
to various global state features

- Predefined primitive action policy

- Learnable termination function

*Sutton, Richard S., Doina Precup, and Satinder Singh. "Between 

MDPs and semi-MDPs: A framework for temporal abstraction in 

reinforcement learning." Artificial intelligence 112.1-2 (1999).

During training process:

- Generate auxiliary rewards for individual 
agents.

- The auxiliary reward is called Inter Subtask 
Empowerment Reward (ISER)

- ISER is given to an agent if it enables the 
preconditions for subtask execution of 
another agent during the training process.

During training process:

- Also learn the termination function of each subtask using the training data and 
termination gradients.

- Termination gradients adapted from single-agent Option-Critic architecture*.

*Bacon, Pierre-Luc, Jean Harb, and Doina Precup. "The option-critic architecture." Proceedings of the AAAI Conference 

on Artificial Intelligence. Vol. 31. No. 1. 2017.

𝑹𝒋 = 𝑤1 × 𝑅𝑒𝑥𝑡 + 𝑤2 × ISER



• Experiments performed using a custom (simulated) Search & Rescue task involving heterogeneous and 
homogeneous agents.

• Comparison with a standard multi-agent HRL method called Cooperative HRL (CoHRL). – CoHRL uses only 
the external global reward, does not account for inter-dependencies, and uses fixed termination rules/boundaries.

• Performance measure in terms of the number of victim deaths at the end of the task.

• The auxiliary reward ISER improves the performance even when added to CoHRL itself, reducing the 
number of deaths by almost 50% compared to CoHRL alone. 

• ISEMO achieves higher performance through the combination of both the ISER and the adaptive 
termination functions (almost 70% fewer deaths compared to CoHRL alone).

• With ISER, agents learn faster to select and execute those subtasks that enable the operation of other 
agents, resulting in better overall performance.

Experiment Highlights
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Assumptions and Limitations
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• Agents must have global observability, ability to communicate, and factored state representation.

• Subtasks are handcrafted, not autonomously discovered.
- Work on subtask/subgoal discovery in multi-agent HRL is nascent and highly challenging.

• The auxiliary reward ISER is derived using handcrafted preconditions (of subtasks).
- How can the preconditions and ISER be learned? 
Discussed at the end of the presentation (Future Work).



Accelerating End-to-End HRL using Integrated 

Discovery of  Salient Subgoals
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1. S. Pateria, B. Subagdja, A. -H. Tan and C. Quek, "End-to-End Hierarchical Reinforcement Learning With 
Integrated Subgoal Discovery," in IEEE Transactions on Neural Networks and Learning Systems.
2. Shubham Pateria, Budhitama Subagdja, and Ah Hwee Tan. 2020. Hierarchical Reinforcement Learning with 
Integrated Discovery of Salient Subgoals. In Proceedings of the 19th International Conference on Autonomous 
Agents and Multi Agent Systems (AAMAS '20). 

C2: How to unify single-
agent HRL with 

autonomous subgoal 
discovery while tackling 

slow end-to-end learning?



Scope
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• Context: Learning to reach long-horizon goals in single-
agent navigation or control tasks, using end-to-end HRL.

Issues and Challenges:
• Vanilla end-to-end HRL methods use a large continuous 

subgoal space* as the output space of subgoal selection 
policy so that the policy implicitly discovers useful 
subgoals.

This leads to the slow end-to-end learning issue.

Imagine a continuous 2D
subgoal space

Continuous-output subgoal-
selection policy: The output
of the policy is initially
random.

Over multiple iterations of
exploration and training, the
agent learns the Q-value
function.

The gradients of the Q-value
function are simultaneously
used to learn the subgoal-
selection policy

The output of the policy
finally converges to the
optimal subgoal(s)

𝑔

𝑔∗

*A discussion on parametric subtask spaces would be more complicated and out of scope for this work.
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LIDOSS: End-to-End Hierarchical Reinforcement Learning with Integrated 

Discovery Of Salient Subgoals 



• MuJoCo task domains. Continuous state and action spaces. Navigation to goals while avoiding obstacles.

• Comparison with Hierarchical Actor Critic (HAC): A state-of-the-art (vanilla) end-to-end HRL without explicit subgoal 
discovery. Uses continuous subgoal space and parametric continuous-output subgoal-selection policy.

• LIDOSS (discrete salient subgoals) outperforms HAC by achieving 10-40% higher success rates of reaching the goals, 
across different experiments. 
- Both methods learn Q-value distribution at a similar pace. LIDOSS discovers subgoals faster than HAC’s subgoal-selection policy 
learns & converges on useful subgoals. LIDOSS does not need gradient-based training for non-parametric 𝜖-greedy subgoal-
selection policy.

• Is simple discretization/quantization of the subgoal space enough? 
LIDOSS outperforms a quantization-only variant by achieving 6-15% higher success rates of reaching the goals, across 
different experiments. Observations:
- The quantization-only agent chooses a long and haphazard sequence of subgoals in a few episodes, possibly due to closely packed 
subgoals. This might affect exploration and learning. 
- Quantization might also include unreachable subgoals, such as those lying within walls.

Experiment Highlights
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• LIDOSS requires subgoal space quantization for probability estimation, which might be challenging in 
very high-dimensional subgoal spaces.

• The subgoal discovery heuristic does not take reward distribution into consideration. It is suitable 
for tasks with terminal rewards generated only at the end of an episode.

• Pros and Cons of discrete salient subgoals compared to continuous subgoal space:

- Pros: Simplified output space of the subgoal selection policy. 
Use of discrete-output non-parametric policy which does not require slow gradient-based training 
(directly uses Q-values).

- Cons: Restricts the ability to sample new subgoals from previously unseen/unexplored regions of the subgoal   
space, a generalization that is possible with continuous subgoal space and continuous output policy (such 
as in HAC). 
Non-trivial to apply subgoal discovery in large state spaces.

Assumptions and Limitations
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Learning Subgoal Graphs using Value-based Subgoal 

Discovery and Graph Pruning

18

Full paper submitted to IEEE Transactions on Neural Networks and Learning Systems, on 05-Oct-2021. The manuscript is under review.

C3: How to learn subgoal 
graphs that produce more 

rewarding and feasible 
plans for single-agent
Planning-based ATD?



Scope
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• Context: Learning to reach long-horizon goals in single-agent navigation or control tasks using subgoal 
graph-based goal decomposition and planning.

Issues and Challenges:
• The existing methods do not learn a subgoal graph that conforms to the reward distribution. Hence, 

they are not suitable for environments with non-uniform distribution of rewards across different 
regions of the state space

• The existing methods might plan infeasible sequences of subgoals (e.g. transition across obstacles)
due to erroneously predicted connections (edges) between certain pairs of subgoals (nodes).



LSGVP: Learning Subgoal Graph using Value-based Subgoal Discovery and 

Automatic Pruning

20

Exploration and Training:
- Explore the environment. Save episodic 
data. Save observed states in a memory 
buffer.
- Learn primitive action policy 𝜋 and Q-
value function 𝑄𝜋 using shorter-horizon 
(pseudo) goals. 𝜋 & 𝑄 frozen after training.

Inter-state Distance Function (𝑫)

Subgoal Discovery:
- Define a subgoal dissimilarity measure
based on the distance function.
- Subgoals that are dissimilar beyond a 
threshold are discovered as salient subgoals.

Graph Construction: Construct a 
subgoal graph by adding directed 
edges between subgoals (nodes) if 
the inter-subgoal distance, 
estimated using 𝑫, is below a 
threshold.

Graph Pruning: Do back-and-forth 
traversals across the edges in the 
graph to test if predicted distances 
are correct, otherwise prune 
erroneous edges.

Low subgoal dissimilarity 
for all start, goal pairs

High subgoal dissimilarity for 
at least one start, goal pair

High subgoal dissimilarity for 
at least one start, goal pair

Higher positive 
reward at the Coin 
region

Testing:
- Dijkstra’s shortest path planning to find 
a sequence of subgoals between a start 
state and a given long-horizon goal.
- Traverse to subgoals using 𝜋.



Experiment Highlights
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• Experiment 1: Testing the effect of value-based subgoal discovery.

- Custom Coin Gather task. Continuous state and action spaces. Navigation to goal(s) while avoiding obstacles.  

Intermediate positive reward at the Coins.

- Performance metrics: Average Positive Cumulative Rewards (APCR) and Average Success Rate (of reaching 
goals) across testing episodes.

- Average Success Rates are found to be the same for all the compared methods.

• LSGVP achieves ~42% higher APCR compared to a state-of-the-art subgoal graph-based ATD method 
called Search on the Replay Buffer (SoRB). SoRB performs uniform subgoal sampling and does not 
prune the graph. For this experiment, graph pruning was added to SoRB. 

• LSGVP achieves 39-46% higher APCR compared to two other subgoal sampling/discovery methods: 
Farthest Point Sampling and Bottleneck discovery. Graph pruning was added to both methods for 
this experiment.



Experiment Highlights
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• Experiment 2: Testing the effect of graph pruning.

• Comparison with state-of-the-art subgoal graph-based ATD methods:
- Search on the Replay Buffer (SoRB), in two-dimensional navigation domains (Point Four Rooms and Maze).
- Semi Parametric Topological Memory (SPTM), in higher-dimensional VizDoom navigation game.
- Both methods do not prune the subgoal graphs.

• LSGVP achieves higher goal-reaching success rates (percentage) than SoRB and SPTM, for similar 
levels of subgoal graph sparsity

LSGVP
96.8 +- 3.6

Point Four Rooms

SoRB
52.3 +- 4.7

LSGVP
69.2 +- 5.5

Point Maze

SoRB
20.7 +- 4.3

LSGVP
74.5 +- 9.6

VizDoom

SPTM
52.4 +- 12.3

Average success rate across ten trials.



Experiment Highlights
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• Experiment 3: Testing data efficiency compared to model-free HRL.
- Comparison with LIDOSS and HAC, both with 2-level policy hierarchy.

- MuJoCo continuous control domains, for navigation (Four Rooms) and robot arm-control (UR5).

• LIDOSS and HAC require training with more data (larger number of experience steps) to reach similar 
success rates as LSGVP.

Average success rates, across fifty trials.



Assumptions and Limitations
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• LSGVP works under the assumption that the agent can completely explore the environment 
during the initial training phase, before subgoal discovery, to learn a stationary subgoal graph. 

• Therefore, LSGVP is not suitable for unbounded or infinite state spaces which need to be 
continuously explored or for non-stationary environments.

• LSGVP requires a default reward of -1 at each action step, apart from any intermediate positive 
reward.  
This is to ensure that physical traversal distances can also be included in the distance function based on the 
Q-values.



Conclusion 
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LSGVP: introduces cumulative reward-
based subgoal discovery and automatic 
pruning of erroneous connections in the 

subgoal graph, leading to higher 
cumulative rewards and goal-reaching 

success rates.

Summary
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C1: How to effectively train 
multiple HRL agents under 
complex sequential inter-
dependencies and sparse 

global rewards?

C2: How to unify single-agent
HRL with autonomous subgoal 
discovery while tackling slow 

end-to-end learning?

C3: How to learn subgoal 
graphs that produce more 

rewarding and feasible plans 
for single-agent Planning-

based ATD?

ISEMO: improves multi-agent 
HRL under complex inter-

dependencies among agents, 
using auxiliary rewards based 
on one agent enabling others’ 

subtasks.

LIDOSS: accelerates end-to-
end HRL by simplifying the 
output space of subgoal-
selection policy, using a 

probability-based subgoal 
discovery heuristic.

ATD Challenges

Introduced ATD 
Methods



Towards building general agents capable of solving diverse long-horizon tasks, by 
learning skill repositories and hierarchical transition models

• Humans learn, store, and compose skills to solve a variety of complex tasks.
• Learning and storing subtask-solving policies as lifelong skills.
• Incremental skill discovery; relation to curriculum learning and imitation learning.

• Learning hierarchical models of skill transitions, for long-horizon planning. 

• Affordances: learning preconditions for skill initiation. In a multi-agent context, learned affordances 
can also enable learning auxiliary rewards such as ISER.
- Affordances are clues in the environment that indicate possibilities for action

- ISER can be derived by detecting a positive response from an affordance classifier corresponding to a subtask.
- Learning affordance in RL: http://proceedings.mlr.press/v119/khetarpal20a/khetarpal20a.pdf
- Affordances with respect to long-term outcomes: https://arxiv.org/pdf/2011.08424.pdf
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Major Future Work

http://proceedings.mlr.press/v119/khetarpal20a/khetarpal20a.pdf
https://arxiv.org/pdf/2011.08424.pdf


Publications and Papers Under Review
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Publications:
• S. Pateria, B. Subagdja, A. -H. Tan and C. Quek, "End-to-End Hierarchical Reinforcement Learning With Integrated 

Subgoal Discovery," in IEEE Transactions on Neural Networks and Learning Systems (June 2021, Early Access), doi: 
10.1109/TNNLS.2021.3087733. (Impact Factor close to 9.0)

• Shubham Pateria, Budhitama Subagdja, and Ah Hwee Tan. 2020. Hierarchical Reinforcement Learning with Integrated 
Discovery of Salient Subgoals. In Proceedings of the 19th International Conference on Autonomous Agents and Multi 
Agent Systems (AAMAS ‘20), Richland, SC, 1963–1965.

• Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. 2021. Hierarchical Reinforcement Learning: A 
Comprehensive Survey. ACM Comput. Surv. 54, 5, Article 109 (June 2021), 35 pages. (Impact Factor > 10)

• S. Pateria, B. Subagdja and A. Tan, "Multi-agent Reinforcement Learning in Spatial Domain Tasks using Inter Subtask 
Empowerment Rewards," 2019 IEEE Symposium Series on Computational Intelligence (SSCI), 2019, pp. 86-93, doi: 
10.1109/SSCI44817.2019.9002777.

Under Review:
• “Value-based Subgoal Discovery and Path Planning for Reaching Long-Horizon Goals” is submitted as a full paper to 

IEEE Transactions on Neural Networks and Learning Systems and is currently under review (1st round). Submitted on 
05-Oct-2021.



Thank You!
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Reach me by email at: SHUBHAM007@e.ntu.edu.sg
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Difference Rewards

Reward Shaping for Multi-agent 

Credit Assignment

System performance without the 
action of agent 𝑖

System 
performance

Assigning auxiliary reward ISER can be viewed as a form of credit assignment for the following special case: 

• Better system performance depends on enabling the agents to execute the subtasks required to achieve the 
joint task. 

• If an agent enables the preconditions for subtask execution of other agent(s), it can potentially improve the 
system performance. Thus, ISER assignment is a form of credit assignment for eventually better system 
performance.

Made the mistake of not explaining this properly in the thesis.

Usage of this terminology (‘credit assignment’) can be avoided without diminishing the contribution and outcome 
of the work.


