
ISEMO-SW

1 Description

The execution starts from main.py. This file contains three functions: makeWorlds, mainISEMO,
and mainCoHRL. makeWorlds() is called once to prepare the environment objects and save
them into PL files (.pl). The number of objects is equal to the number of training runs or trials
(given by the argument args.nruns). This is the number of times the training is performed by
resetting the agents (i.e. their function parameters) in each run.

makeWorlds() creates objects of the World class. This class is defined in the file World.py.
A World() object contains the true grid-map of the indoor search & rescue environment con-
sisting of victims, debris, path blockage, walls, and obstacles. The location of the victims are
randomly set during the World() object creation (in main.py - makeWorlds()). The World()
object also contains data structures representing the health values of the victims, the lists of
victim locations and status, and the lists of other elements. The numerical values used to
represent these various elements of the search & resource world are defined in the Cell class in
Utils.py.

When the World() objects are ready, other functions in main.py can be called. The main-
CoHRL() function runs the baseline CoHRL method used for comparison against our proposed
method ISEMO. The mainISEMO() functions runs ISEMO. The execution can be in training
mode or testing mode. The instructions to set the mode are provided under section 2. Fol-
lowing discussion is in the context of training mode, but the structure mostly remains same in
testing mode as well.

The argument of mainISEMO(), named noISER, determines which type of agents are
blocked from receiving the ISER rewards. If noISER is None, all types of agents can ob-
serve ISER. mainISEMO() further calls the runISEMO() function which takes the execution
into ISEMO.py. In ISEMO.py, the OptionControl class contains following members: (i)
the estimator object which provides methods to predict the Q-values of the options/subtasks
and to update the Q-function (linear function approximators) parameters, (ii) the policy object
which provides method to sample an option/subtask given a state input, and the critic object
which performs the Temporal Different Q-function updates. These OptionControl members are
initialized in the runISEMO() function in ISEMO.py. runISEMO() also calls the registerA-
gents() function defined in Agents.py. In this function, the total number of agents is defined
as numagents. Then, numagents number of Agent objects are created. The Agent() class
is also defined in Agents.py. An Agent() object takes two inputs: an Agent Environment
object and the agent ID (agid). The Agent Environment is an extension of the World object
discussed above. While the World object is a single instance shared by all Agent instances,
Agent Environment instances are unique to each Agent instance. An Agent Environment in-
stance contains the spatial representation of the World attributes for the corresponding
agent using a list of feature values created by the situupdate() method in Agent Environment
class. This class also contains the update() method which calls situupdate() and also checks
the changes in the option preconditions to generate ISER for the eligible agents.

1



Figure 1: The timing diagram during initiation, before training episodes (or testing run) begin.

Once the Agent objects/instances are created, each containing its own Agent Environment
instance, each Agent is assigned the eligible options/subtasks it can perform by initializing the
oset list in an Agent object. An Agent object provides a method called stepLevel1() which
calls lower level primitive-step functions to execute a given option. These lower level functions
are defined under the Skills class in Skills.py. A Skill instance is created along with an Agent
instance. The call diagram for this initiation stage is shown in Figure 1.

After the creation of the Agent objects/instances, the training/testing proceeds within
runISEMO(). At the beginning of an episode, an option for each agent is sampled using
the sample() function of the policy object contained within OptionControl class. A policy
object is an instance of the SoftmaxPolicy class defined in Utils.py. After initial options
are sampled, the training/testing step loop runs until the termination of an episode. At each
step, the health values of the victims is decayed by calling decayHealth() function of the
World object. Then, each agent takes one step according to its own sampled option using the
stepLevel1(option) function of the corresponding Agent object instance.

The stepLevel1() function of an Agent object (in Agents.py) calls the lower level functions
defined in the Skills class in Skills.py in repsonse to the input option. These functions are
described below:

• scan() function performs scanning of local area around an agent’s location. This function
also calls the on scan() function of the World class which modifies the world attributes
in response.

• save() function calls the on aid() function of the World class which modifies the status
of critical victims in the proximity of the agent to stable.

• fetch() function takes either Cell.station or Cell.victim stable as argument. If it is the
former, then the count of medicine (med variable in the Agent Environment class) is
increased. Otherwise, this function also calls the on carry() function of the World class
which modifies status of the victims in the proximity of the agent and adds them to the
carried victims list.

2



• relocate() function performs relocation of carried victims if the base station is in prox-
imity of the agent. This function also calls the on relocation() function of the World
class which modifies the World attributes in response.

• clear debris() function calls the on clear debris() function of the World class which
modifies the World attributes to reflect the removal a debris element.

• clear blockage() function calls the on clear blockage() function of the World class
which modifies the World attributes to reflect the removal a blockage element.

• move to() function computes A∗ path to a given target and moves the agent.

Following the stepLevel1(option) calls for all agent, the environment state of each agent
is updated. This is done by calling the update() function of the Agent Environment class
(in AgentEnv.py). The update() function calls another function within the Agent Environment
class named situupdate which computes the state features using the latest attributes of the
World object. The update() function also checks if any precondition factors are satisfied and
prepares a list of agents to which ISER should be given. The function returns both the latest
environment state (next state) and the ISER list ISER to. runISEMO() then calls the re-
ward blender() function defined in Utils.py. The reward blender() function gets the global
shared rewards from the shared global reward() function of the World defined in the World
class. The global rewards (task rewards) are blended with ISER by weighted summation and
the final reward is return by the reward blender() to runISEMO().

If the execution is in training mode, the parameterized Q-function models defined under
the Estimator class in Utils.py are updated by calling the update() function of the ISEM-
OCritic class in Utils.py. The termination functions (betamodels in the Estimator class) are
also updated by calling the update() function of the TerminationGradient class in Utils.py.
The termination of an option/subtask is checked by calling the option termination probability
sampling function sample() of the SigmoidTermination class in Utils.py. If an option ter-
minates, a new option is sampled by calling the sample() function of the SoftmaxPolicy class
object.

At the end of each step, the finish() function of the World class is called. This function
checks if an episode should terminate. If the function returns true, the episode loop is termi-
nated and a new episode begins. Before termination of the episode, the trained models are
saved pickle (.pkl) format files by calling the save models() function of the Estimator class in
Utils.py. The models are saved only in the training mode. The timing diagram during training
iterations in depicted in Figure 2.

2 Instructions to run training/testing

2.1 Dependencies

• Python ≥ 3.5.0

• scikit-learn==0.19.1

• scipy==1.0.0

• opencv-python==4.1.1.26

3



Figure 2: The timing diagram during a step of training.

2.2 Running the code

Before training, it is required to make the World objects. To make the world objects, give
the following command: pythonmain.py −−make. The result will be saved files named as
”MA-World-{i}.pl, where i ranges from 0 to nruns − 1. nruns is defined in the args class
in main.py.

To run the software in the training mode, give the following command: pythonmain.py. By
default, this runs ISEMO. To run CoHRL instead, give the following command: pythonmain.py
−−runCoHRL.

During training, data is saved in files with the name as: ”historyISEMO testingFalse .npy”.
The list of data items saved can be checked in ISEMO.py (refer to the multi-dimensional array
history). In case of CoHRL, the name ”ISEMO” is replaced with ”CoHRL”. Moreover, the
learned models for the Q-functions and the termination functions (betamodels) are saved in the
”models” folder.

To run the software in the testing mode, give the following command: pythonmain.py
−−testing −−testID {i}. Here, testID is the index of the saved World object (MA-World-
{i}.pl) to be used for testing.

4


